Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Groups and Analysis
  • Language: en
  • Pages: 327

Groups and Analysis

Many areas of mathematics were deeply influenced or even founded by Hermann Weyl, including geometric foundations of manifolds and physics, topological groups, Lie groups and representation theory, harmonic analysis and analytic number theory as well as foundations of mathematics. In this volume, leading experts present his lasting influence on current mathematics, often connecting Weyl's theorems with cutting edge research in dynamical systems, invariant theory, and partial differential equations. In a broad and accessible presentation, survey chapters describe the historical development of each area alongside up-to-the-minute results, focussing on the mathematical roots evident within Weyl's work.

Spaces of Kleinian Groups
  • Language: en
  • Pages: 399

Spaces of Kleinian Groups

The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.

In the Tradition of Ahlfors-Bers, VI
  • Language: en
  • Pages: 203

In the Tradition of Ahlfors-Bers, VI

The Ahlfors-Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmuller theory, hyperbolic geometry, and partial differential equations. However,

In the Tradition of Ahlfors-Bers, V
  • Language: en
  • Pages: 346

In the Tradition of Ahlfors-Bers, V

The Ahlfors-Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmuller theory, hyperbolic geometry, and partial differential equations. However, the work of Ahlfors and Bers has impacted and created interactions with many other fields of mathematics, such as algebraic geometry, dynamical systems, topology, geometric group theory, mathematical physics, and number theory. Recent years have seen a flowering of this legacy with an increased interest in their work. This current volume contains articles on a wide variety of subjects that are central to this legacy. These include papers in Kleinian groups, classical Riemann surface theory, translation surfaces, algebraic geometry and dynamics. The majority of the papers present new research, but there are survey articles as well.

First European Congress of Mathematics Paris, July 6–10, 1992
  • Language: en
  • Pages: 530

First European Congress of Mathematics Paris, July 6–10, 1992

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice J. Frhlich: Mathematical Aspects of the Quantum Hall Effect M. Giaquinta: Analytic and Geometric Aspects of Variational Problems for Vector Valued Mappings U. Hamenstdt: Harmonic Measures for Leafwise Elliptic Operators Along Foliations M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology S.B. Kuksin: KAM-Theory for Partial Differential Equations M. Laczkovich: Paradoxical Decompositions: A Survey of Recent Results J.-F. Le Gall: A Path-Valued Markov Process and its Connections with Partial Differential Equations I. Madsen: The Cyclotomic Trace in Algebraic K-Theory A.S. Merkurjev: Algebraic K-Theory and Galoi...

Problems on Mapping Class Groups and Related Topics
  • Language: en
  • Pages: 384

Problems on Mapping Class Groups and Related Topics

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II conce...

A Primer on Mapping Class Groups
  • Language: en
  • Pages: 490

A Primer on Mapping Class Groups

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.

Kleinian Groups and Hyperbolic 3-Manifolds
  • Language: en
  • Pages: 396

Kleinian Groups and Hyperbolic 3-Manifolds

The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, with many old problems and conjectures close to resolution. This volume, proceedings of the Warwick workshop in September 2001, contains expositions of many of these breakthroughs including Minsky's lectures on the first half of the proof of the Ending Lamination Conjecture, the Bers Density Conjecture by Brock and Bromberg, the Tameness Conjecture by Kleineidam and Souto, the state of the art in cone manifolds by Hodgson and Kerckhoff, and the counter example to Thurston's K=2 conjecture by Epstein, Marden and Markovic. It also contains Jørgensen's famous paper 'On pairs of once punctured tori' in print for the first time. The excellent collection of papers here will appeal to graduate students, who will find much here to inspire them, and established researchers who will find this valuable as a snapshot of current research.

Selected Papers Of Wilhelm P A Klingenberg
  • Language: en
  • Pages: 548

Selected Papers Of Wilhelm P A Klingenberg

This set of selected papers of Klingenberg covers some of the important mathematical aspects of Riemannian Geometry, Closed Geodesics, Geometric Algebra, Classical Differential Geometry and Foundations of Geometry of Klingenberg. Of significance were his contributions to Riemannian Geometry in the Large which opened a new area in Global Riemannian Geometry. He also introduced the Hilbert manifold of closed curves of class H1 on a Riemannian manifold. In connection with his work in closed geodesics, he became interested in the properties of the geodesic flow. Classical results from dynamical systems became useful tools for the study of closed geodesics. He was also credited for drawing closer together Riemannian Geometry and Hamiltonian systems, which had developed separately since the time of H Poincaré.Besides publishing research papers, Klingenberg also wrote a dozen books and lecture notes, among which is the important reference work “Riemannsche Geometrie im Groβen”.