You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An Introduction to Partial Differential Equations with MATLAB, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat,
Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusin...
The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental ph
As a relatively new area in mathematics, stochastic partial differential equations (PDEs) are still at a tender age and have not yet received much attention in the mathematical community. Filling the void of an introductory text in the field, Stochastic Partial Differential Equations introduces PDEs to students familiar with basic probability theory and Itô's equations, highlighting several computational and analytical techniques. Without assuming specific knowledge of PDEs, the text includes many challenging problems in stochastic analysis and treats stochastic PDEs in a practical way. The author first brings the subject back to its root in classical concrete problems. He then discusses a ...
With numerous examples and exercises throughout, this book describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It presents a complete and up-to-date account of many important advances in the modeling and control of vibrational and structural dynamics. The text applies the differential geometric approach to waves, plates, shells, and quasilinear systems and describes differential geometric energy methods that are generalizations of classical energy methods. To make the book self-contained, the author gives an introduction to Riemannian geometry.
Despite remarkable developments in the field, a detailed treatment of non-Kerr law media has not been published. Introduction to non-Kerr Law Optical Solitons is the first book devoted exclusively to optical soliton propagation in media that possesses non-Kerr law nonlinearities. After an introduction to the basic features of fiber-optic com
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.
No detailed description available for "Blow-Up in Quasilinear Parabolic Equations".
One of the first books to thoroughly examine the subject, Quantum Computing Devices: Principles, Designs, and Analysis covers the essential components in the design of a "real" quantum computer. It explores contemporary and important aspects of quantum computation, particularly focusing on the role of quantum electronic devices as quantum gates.
A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers’ paradox, ...