You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of lecture notes which were presented by invited speakers at the Eleventh School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter SSPCM 2014' in Rzeszów (Poland) in September 2014. The main challenge for the lecturers was the objective to present their subject as a review as well as in the form of introduction for beginners. Topics considered in the volume concentrate on: spin dynamics and spin transport in magnetic and non-magnetic structures, spin-orbit interaction in two-dimensional systems and graphene, and new mathematical method used in the condensed matter physics.
This volume presents lecture notes of the 12th International School of Theoretical Physics held in 2016 in Rzeszów, Poland. The lectures serve as an introduction for young physicists starting their career in condensed matter theoretical physics. The book provides a comprehensive overview of modern ideas and advances in theories and experiments of new materials, quantum nanostructures as well as new mathematical methods.This lecture note is an essential source of reference for physicists and materials scientists. It is also a suitable reading for graduate students.
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner
This book represents recent cutting-edge developments in low temperature physics, reported at one of the largest international conferences in physics. The subjects covered are superconductivity, magnetism, quantum gases, quantum liquids and solids, electronic properties of solids, low-temperature experimental techniques, cryogenics, and applications.
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner
In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory an...
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent develo...
The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 1 deals with the properties and growth of GaN. The deposition methods considered are: hydride VPE, organometallic CVD, MBE, and liquid/high pressure growth. Additionally, extended defects and their electrical nature, point defects, and doping are reviewed.