You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the thoroughly refereed post-conference proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC 2010, held in Leeds, UK, in April 2010. The 15 revised papers presented were carefully selected during two rounds of reviewing and improvement. Focussing on theoretical aspects of quantum computation, quantum communication, and quantum cryptography - part of a larger interdisciplinary field embedding information science in a quantum mechanical framework - the papers present current original research. Topics addressed include quantum algorithms, models of quantum computation, quantum complexity theory, simulation of quantum systems, quantum cryptography, quantum communication, quantum estimation and measurement, quantum noise, quantum coding theory, fault-tolerant quantum computing, and entanglement theory.
This volume contains contributions based on the lectures delivered and posters presented at the Fifth International Conference on Quantum Communication, Measurement and Computing (QCM&C-Y2K). This Conference is the fifth of a successful series hosted this time in Italy, was held in Capri, 3-7 July, 2000. The conference was attended by more than 200 participants from all over the world. There was also a high level of participation from graduate students, who greatly benefited from the opportunity to attend world-class conferences. The Conference Hall was hosted in La Residenza Hotel in Capri, where part of p- ticipants where housed, while others where housed in various cozy nearby - tels. All...
This book presents the research into and application of machine learning in quantum computation, known as quantum machine learning (QML). It presents a comparison of quantum machine learning, classical machine learning, and traditional programming, along with the usage of quantum computing, toward improving traditional machine learning algorithms through case studies. In summary, the book: Covers the core and fundamental aspects of statistics, quantum learning, and quantum machines. Discusses the basics of machine learning, regression, supervised and unsupervised machine learning algorithms, and artificial neural networks. Elaborates upon quantum machine learning models, quantum machine learning approaches and quantum classification, and boosting. Introduces quantum evaluation models, deep quantum learning, ensembles, and QBoost. Presents case studies to demonstrate the efficiency of quantum mechanics in industrial aspects. This reference text is primarily written for scholars and researchers working in the fields of computer science and engineering, information technology, electrical engineering, and electronics and communication engineering.
Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution search space or among a collection of objects. A solution can be a set of value assignments to variables that will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search algorithms and applications. The chapters are organized into three parts: Population-based and quantum search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering applications.
None
This book constitutes the thoroughly refereed post-conference proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC 2010, held in Leeds, UK, in April 2010. The 15 revised papers presented were carefully selected during two rounds of reviewing and improvement. Focussing on theoretical aspects of quantum computation, quantum communication, and quantum cryptography - part of a larger interdisciplinary field embedding information science in a quantum mechanical framework - the papers present current original research. Topics addressed include quantum algorithms, models of quantum computation, quantum complexity theory, simulation of quantum systems, quantum cryptography, quantum communication, quantum estimation and measurement, quantum noise, quantum coding theory, fault-tolerant quantum computing, and entanglement theory.
Stories and fantasy play engage all young children and help them to draw connections and make sense of the world. MakeBelieve Arts Helicopter Stories are tried, tested and proven to have a significant impact on children’s literacy and communication skills, their confidence and social and emotional development. Based on the storytelling and story acting curriculum of Vivian Gussin Paley, this book provides a practical, step-by-step guide to using this approach with young children. Covering all aspects of the approach, Artistic Director Trisha Lee shows you how you can introduce Helicopter Stories to children for the first time, scribing their tales and then bring their ideas to life by acti...
This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.