You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularl...
Presenting research papers contributed by experts in dynamics and control, Advances in Dynamics and Control examines new ideas, reviews the latest results, and investigates emerging directions in the rapidly-growing field of aviation and aerospace. Exploring a wide range of topics, key areas discussed include:* rotorcraft dynamics* stabilization of
The investigation of special topics in systems dynamics -uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory-has become a major issue at the System and Decision Sciences Research Program of the International Insti tute for Applied Systems Analysis. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under vari ations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a w...
This book is based on an International Conference on Trends in Theory and Practice of Nonlinear Differential Equations held at The University of Texas at Arlington. It aims to feature recent trends in theory and practice of nonlinear differential equations.
It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEE...
The study of nonlinear phenomena in aviation and aerospace includes developments in computer technology and the use of nonlinear mathematical models. Nonlinearities are a feature of aircraft dynamics and flight control systems and need to respond to achieve stability and performance. This multiauthor volume comprises selected papers from the conference Nonlinear Problems in Aviation and Aerospace at Embry-Riddle Aeronautical University and additional invited papers from many distinguished scientists. Coverage includes orbit determination of a tethered satellite system using laser and radar tracking, and intelligent control of agile aircraft, flight control with and without control surfaces.
Starting with a graph-theoretic framework for structural modeling of complex systems, this text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and the underlying inclusion principle, and reliability design. An appendix provides efficient graph algorithms. 1991 edition.
This monograph is a collective work. The names appear ing on the front cover are those of the people who worked on every chapter. But the contributions of others were also very important: C. Risito for Chapters I, II and IV, K. Peiffer for III, IV, VI, IX R. J. Ballieu for I and IX, Dang Chau Phien for VI and IX, J. L. Corne for VII and VIII. The idea of writing this book originated in a seminar held at the University of Louvain during the academic year 1971-72. Two years later, a first draft was completed. However, it was unsatisfactory mainly because it was ex ce~sively abstract and lacked examples. It was then decided to write it again, taking advantage of -some remarks of the students to...
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.