You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides a novel interdisciplinary perspective on the state of the art of ultrametric pseudodifferential equations and their applications.
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
A wide-ranging 2010 survey of new and important topics in p-adic analysis for researchers and graduate students.
Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today's rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations.This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell's equations, crystal optics, dynamical problems for cusped bars, and conservation laws. remove /a remove
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmo...
Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today's rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations.This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell's equations, crystal optics, dynamical problems for cusped bars, and conservation laws.
"Contains research articles by nearly 40 leading mathematicians from North and South America, Europe, Africa, and Asia, presented at the Fourth International Conference on p-adic Functional Analysis held recently in Nijmegen, The Netherlands. Includes numerous new open problems documented with extensive comments and references."
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
The extensive application of modern mathematical teehniques to theoretical and mathematical physics requires a fresh approach to the course of equations of mathematical physics. This is especially true with regards to such a fundamental concept as the 80lution of a boundary value problem. The concept of a generalized solution considerably broadens the field of problems and enables solving from a unified position the most interesting problems that cannot be solved by applying elassical methods. To this end two new courses have been written at the Department of Higher Mathematics at the Moscow Physics anrl Technology Institute, namely, "Equations of Mathematical Physics" by V. S. Vladimirov an...
This book is a continuation of the book Green's Functions and Transfer Functions [35] written some ten years ago. However, there is no overlap whatsoever in the contents of the two books, and this book can be used quite independently of the previous one. This series of books represents a new kind of handbook, in which are collected data on the characteristics of systems with distributed and lumped parameters. The present volume covers some two hundred problems. Essentially, this book should be considered as a desktop handbook, intended, like [35], to give rapid "on-line" access to relevant data about problems. For each problem, the book lists all the main characteristics of the solution: standardising functions, Green's functions, transfer functions or matrices, eigenfunctions and eigenvalues with their asymptotics, roots of characteristic equations, and other data. In addition to systems described by a single differential equation, this volume also includes degenerate multiconnected systems, systems for which no Green's function or matrix exists, and other special cases which are important for applications.