You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This English edition could serve as a text for a first year graduate course on differential geometry, as did for a long time the Chicago Notes of Chern mentioned in the Preface to the German Edition. Suitable references for ordin ary differential equations are Hurewicz, W. Lectures on ordinary differential equations. MIT Press, Cambridge, Mass., 1958, and for the topology of surfaces: Massey, Algebraic Topology, Springer-Verlag, New York, 1977. Upon David Hoffman fell the difficult task of transforming the tightly constructed German text into one which would mesh well with the more relaxed format of the Graduate Texts in Mathematics series. There are some e1aborations and several new figures...
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...
This volume is an English translation of Sakai's textbook on Riemannian Geometry which was originally written in Japanese and published in 1992. The author's intent behind the original book was to provide to advanced undergraduate and graudate students an introduction to modern Riemannian geometry that could also serve as a reference. The book begins with an explanation of the fundamental notion of Riemannian geometry. Special emphasis is placed on understandability and readability, to guide students who are new to this area. The remaining chapters deal with various topics in Riemannian geometry, with the main focus on comparison methods and their applications.
This set of selected papers of Klingenberg covers some of the important mathematical aspects of Riemannian Geometry, Closed Geodesics, Geometric Algebra, Classical Differential Geometry and Foundations of Geometry of Klingenberg. Of significance were his contributions to Riemannian Geometry in the Large which opened a new area in Global Riemannian Geometry. He also introduced the Hilbert manifold of closed curves of class H1 on a Riemannian manifold. In connection with his work in closed geodesics, he became interested in the properties of the geodesic flow. Classical results from dynamical systems became useful tools for the study of closed geodesics. He was also credited for drawing closer together Riemannian Geometry and Hamiltonian systems, which had developed separately since the time of H Poincaré.Besides publishing research papers, Klingenberg also wrote a dozen books and lecture notes, among which is the important reference work “Riemannsche Geometrie im Groβen”.
Offering some of the topics of contemporary mathematical research, this fourth edition includes a systematic introduction to Kahler geometry and the presentation of additional techniques from geometric analysis.
When looking for applications of ring theory in geometry, one first thinks of algebraic geometry, which sometimes may even be interpreted as the concrete side of commutative algebra. However, this highly de veloped branch of mathematics has been dealt with in a variety of mono graphs, so that - in spite of its technical complexity - it can be regarded as relatively well accessible. While in the last 120 years algebraic geometry has again and again attracted concentrated interes- which right now has reached a peak once more - , the numerous other applications of ring theory in geometry have not been assembled in a textbook and are scattered in many papers throughout the literature, which make...
This book provides an introduction to Riemannian geometry, the geometry of curved spaces. Its main theme is the effect of the curvature of these spaces on the usual notions of geometry, angles, lengths, areas, and volumes, and those new notions and ideas motivated by curvature itself. Isoperimetric inequalities--the interplay of curvature with volume of sets and the areas of their boundaries--is reviewed along with other specialized classical topics. A number of completely new themes are created by curvature: they include local versus global geometric properties, that is, the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. Also featured is an ambitious "Notes and Exercises" section for each chapter that will develop and enrich the reader's appetite and appreciation for the subject.
This book is a new edition of a title originally published in1992. No other book has been published that treats inverse spectral and inverse scattering results by using the so called Poisson summation formula and the related study of singularities. This book presents these in a closed and comprehensive form, and the exposition is based on a combination of different tools and results from dynamical systems, microlocal analysis, spectral and scattering theory. The content of the first edition is still relevant, however the new edition will include several new results established after 1992; new text will comprise about a third of the content of the new edition. The main chapters in the first e...
The problems associated with the movement of water and solutes throughout the plant body have intrigued students of plants since Malpighi's conclusions in 1675 and 1679 that nutrient sap flows upward and downward in stems through vessels in both wood and bark. Steven Hale's ingenious experiments on the movement of water in plants in 1726 and Hartig's observations of sieve-tube exudation in the mid-19th century set the stage for continued intensive studies on long-range transport in plants. In spite of this interest for more than 200 years in the movement of solutes and water in plants, it has only been within the last 20 to 30 years that extensive research effort has been directed toward a critical evaluation of the interactions among the various cellular organelles. The important roles played by the exchange of metabolites in the control and regulation of cellular processes is now widely recognized, but in most instances poorly understood.