You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With contributions from an international team of leading researchers, the book pulls together updated research results in the area of HIV/AIDS modeling to provide readers with the latest information in the field. Topics covered include: AIDS epidemic models; vaccine models; models for HIV/cell dynamics and interactions; cellular kinetics; viral dynamics with antiviral treatments; modeling of drug resistance and quasispecies.
Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer mod...
This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.
This book deals with the development of methodology for the analysis of truncated and censored sample data. It is primarily intended as a handbook for practitioners who need simple and efficient methods for the analysis of incomplete sample data.
A guide to testing statistical hypotheses for readers familiar with the Neyman-Pearson theory of hypothesis testing including the notion of power, the general linear hypothesis (multiple regression) problem, and the special case of analysis of variance. The second edition (date of first not mentione
Textbook for a methods course or reference for an experimenter who is mainly interested in data analyses rather than in the mathematical development of the procedures. Provides the most useful statistical techniques, not only for the normal distribution, but for other important distributions, such a
This work describes several statistical techniques for studying repeated measures data, presenting growth curve methods applicable to biomedical, social, animal, agricultural and business research. It details the multivariate development of growth science and repeated measures experiments, covering time-moving covariates, exchangable errors, bioassay results, missing data procedures and nonparametric and Bayesian methods.
Statistical methods have become an increasingly important and integral part of research in the health sciences. Many sophisticated methodologies have been developed for specific applications and problems. This self-contained comprehensive volume covers a wide range of topics pertaining to new statistical methods in the health sciences, including epidemiology, pharmacovigilance, quality of life, survival analysis, and genomics. The book will serve the health science community as well as practitioners, researchers, and graduate students in applied probability, statistics, and biostatistics.
Statistical Methods in Computer Security summarizes discussions held at the recent Joint Statistical Meeting to provide a clear layout of current applications in the field. This blue-ribbon reference discusses the most influential advancements in computer security policy, firewalls, and security issues related to passwords. It addresses crime and m
Summarizing developments and techniques in the field, this reference covers sample surveys, nonparametric analysis, hypothesis testing, time series analysis, Bayesian inference, and distribution theory for applications in statistics, economics, medicine, biology, engineering, sociology, psychology, and information technology. It supplies a geometric proof of an extended Gauss-Markov theorem, approaches for the design and implementation of sample surveys, advances in the theory of Neyman's smooth test, and methods for pre-test and biased estimation. It includes discussions ofsample size requirements for estimation in SUR models, innovative developments in nonparametric models, and more.