You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an introduction to the modern theory of Markov chains, whose goal is to determine the rate of convergence to the stationary distribution, as a function of state space size and geometry. This topic has important connections to combinatorics, statistical physics, and theoretical computer science. Many of the techniques presented originate in these disciplines. The central tools for estimating convergence times, including coupling, strong stationary times, and spectral methods, are developed. The authors discuss many examples, including card shuffling and the Ising model, from statistical mechanics, and present the connection of random walks to electrical networks and apply it to estimate hitting and cover times. The first edition has been used in courses in mathematics and computer science departments of numerous universities. The second edition features three new chapters (on monotone chains, the exclusion process, and stationary times) and also includes smaller additions and corrections throughout. Updated notes at the end of each chapter inform the reader of recent research developments.
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of GLn over Q of any given infinitesimal character, for essentially all n≤8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple Z-forms of the compact groups SO7, SO8, SO9 (and G2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of GLn with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups Γ⊂PSL2(R). In the case that Γ is the modular group PSL2(Z) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all Γ-invariant eigenfunctions of the Laplace operator. For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.
The authors consider a d-dimensional random field u={u(t,x)} that solves a non-linear system of stochastic wave equations in spatial dimensions k∈{1,2,3}, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent β. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of Rd, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when d(2−β)>2(k+1), points are polar for u. Conversely, in low dimensions d, points are not polar. There is, however, an interval in which the question of polarity of points remains open.
The authors consider the Hodge Laplacian \Delta on the Heisenberg group H_n, endowed with a left-invariant and U(n)-invariant Riemannian metric. For 0\le k\le 2n+1, let \Delta_k denote the Hodge Laplacian restricted to k-forms. In this paper they address three main, related questions: (1) whether the L^2 and L^p-Hodge decompositions, 1
Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
This paper quantifies the speed of convergence and higher-order asymptotics of fast diffusion dynamics on Rn to the Barenblatt (self similar) solution. Degeneracies in the parabolicity of this equation are cured by re-expressing the dynamics on a manifold with a cylindrical end, called the cigar. The nonlinear evolution becomes differentiable in Hölder spaces on the cigar. The linearization of the dynamics is given by the Laplace-Beltrami operator plus a transport term (which can be suppressed by introducing appropriate weights into the function space norm), plus a finite-depth potential well with a universal profile. In the limiting case of the (linear) heat equation, the depth diverges, t...
Volume 2 - The Demon Leaves The Mountain "Kill them all, gain notoriety through killing. Kill until these people tremble in fear, only then will they not dare to lightly provoke us." A story of a villain, Fang Yuan who was reborn 500 years into the past with the Spring Autumn Cicada he painstakingly refined. With his profound wisdom, battle and life experiences, he seeks to overcome his foes with skill and wit! Ruthless and amoral, he has no need to hold back as he pursues his ultimate goals. In a world of cruelty where one cultivates using Gu - magical creatures of the world - Fang Yuan must rise up above all with his own power. Humans are clever in tens of thousands of ways, Gu are the true refined essences of Heaven and Earth. The Three Temples are unrighteous, the demon is reborn. Former days are but an old dream, an identical name is made anew. A story of a time traveler who keeps on being reborn. A unique world that grows, cultivates, and uses Gu. The Spring and Autumn Cicada, the Venomous Moonlight Gu, the Wine Insect, All-Encompassing Golden Light Insect, Slender Black Hair Gu, Gu of Hope… And a great demon of the world that does exactly as his heart pleases!
The Hamiltonian ∫X(∣∂tu∣2+∣∇u∣2+m2∣u∣2)dx, defined on functions on R×X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. The author considers perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. The author shows that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size ϵ give rise to almost global solutions, i.e. solutions defined on a time interval of length cNϵ−N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus.
Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a nontrivial -restricted irreducible tensor indecomposable rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where and is a disconnected almost simple positive-dimensional closed subgroup of acting irreducibly on . Moreover, by combining this result with earlier work, they complete the classification of the irreducible triples where is a simple algebraic group over , and is a maximal closed subgroup of positive dimension.