You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
A collection of anecdotes about physics and the physicists who create new ideas.
**Winner of the Pulitzer Prize, the National Book Award, and the National Book Critics Circle Award** The definitive history of nuclear weapons—from the turn-of-the-century discovery of nuclear energy to J. Robert Oppenheimer and the Manhattan Project—this epic work details the science, the people, and the sociopolitical realities that led to the development of the atomic bomb. This sweeping account begins in the 19th century, with the discovery of nuclear fission, and continues to World War Two and the Americans’ race to beat Hitler’s Nazis. That competition launched the Manhattan Project and the nearly overnight construction of a vast military-industrial complex that culminated in ...
In the complex landscape of modern physics, the electron has often been shrouded in a veil of esoteric theories and paradoxical concepts. From wave-particle duality to quantum fields, the scientific community has journeyed through a labyrinth of abstract ideas to grasp the essence of this fundamental particle. ‘Redefining the Electron’ seeks to illuminate a path out of this maze by revisiting and reinterpreting fundamental concepts that govern the behaviour of electrons. Through clear and accessible language, the book dismantles the complexities of quantum mechanics and the standard model, emphasizing that not all phenomena require arcane explanations. By revisiting foundational principl...
A unique legacy, these lecture notes of Schwinger’s course held at the University of California at Los Angeles were carefully edited by his former collaborator Berthold-Georg Englert and constitute both a self-contained textbook on quantum mechanics and an indispensable source of reference on this fundamental subject by one of the foremost thinkers of twentieth century physics.
The book opens with the portrait of the man behind the awards: Alfred Bernhard Nobel and his biographical sketch. It gives an introduction to the Nobel foundation, prizes,selection of prize winners, and prize ceremonies. Nobel diplomas and Nobel Prize amounts are described in brief. In the end, a list of all 168 Nobel Prizewinners are given which includes the prize-awarding year and prize winning work.Also included is a short account of the laureates' life and work, followed by a historical and explanatory introduction to the particular discovery or achievement which gained him or her the prize.
This book presents a vivid argument for the almost lost idea of a unity of all natural sciences. It starts with the "strange" physics of matter, including particle physics, atomic physics and quantum mechanics, cosmology, relativity and their consequences (Chapter I), and it continues by describing the properties of material systems that are best understood by statistical and phase-space concepts (Chapter II). These lead to entropy and to the classical picture of quantitative information, initially devoid of value and meaning (Chapter III). Finally, "information space" and dynamics within it are introduced as a basis for semantics (Chapter IV), leading to an exploration of life and thought as new problems in physics (Chapter V). Dynamic equations - again of a strange (but very general) nature - bring about the complex familiarity of the world we live in. Surprising new results in the life sciences open our eyes to the richness of physical thought, and they show us what can and what cannot be explained by a Darwinian approach. The abstract physical approach is applicable to the origins of life, of meaningful information and even of our universe.
Spectroscopy is an indispensable tool in understanding physical and chemical structure, and today verysophisticated spectroscopic instruments are available with modern data processing techniques. This bookcovers the elementary and basic aspects of atomic spectroscopy like Bohr’s theory and atomic physics up to thelatest developments including laser cooling, Bose–Einstein condensates and atom lasers. Spectroscopy playsa major role in every field of science and this book would be valuable for physicists, chemists and biologists.
This book aims to present the history and developments of particle physics from the introduction of the notion of particles by the Ionian school until the discovery of the Higgs boson at LHC in 2012. Neutrino experiments and particle accelerators where different particles have been discovered are reviewed. In particular, details about the CERN accelerators are presented. This book also discusses the future developments of the field and the work to popularize high energy physics. A short presentation of some features of astrophysics and its connection to particle physics is also included. At the end of the book, some useful tools in the research of particle physics are given for the advanced readers.
The revolution in twentieth century physics has changed the way we think about space, time and matter and our own place in the universe. It has offered answers to many of the big questions of existence, such as the ultimate nature of things and the how the universe came into being. It has undermined our belief in a Newtonian mechanistic universe and a deterministic future, posing questions about parallel universes, time-travel and the origin and end of everything. At the same time we have witnessed amazing attempts at unification so that physicists are able to contemplate the discovery of a single 'theory of everything' from which we could derive the masses and types of all particles and their interactions. This book tells the story of these discoveries and the people who made them, largely through the work of Nobel Prize winning physicists.