You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There are significant pressures from climate change and air pollution that forests currently face. This book aims to increase understanding of the state and potential of forest ecosystems to mitigate and adapt to climate change in a polluted environment. It reconciles process-oriented research, long-term monitoring and applied modeling through comprehensive forest ecosystem research. Furthermore, it introduces "forest super sites for research for integrating soil, plant and atmospheric sciences and monitoring. It also provides mechanistic and policy-oriented modeling with scientifically sound risk indications regarding atmospheric changes and ecosystem services. - Identifies current knowledge gaps and emerging research needs - Highlights novel methodologies and integrated research concepts - Assesses ecological meaning of investigations and prioritizing research need
"Another love letter from Wohlleben to the green world... makes the case for how we should allow forests throughout the world to regrow and in the process help heal not only the climate but us, as well."—Lydia Millet, Oprah Daily An illuminating manifesto on ancient forests: how they adapt to climate change by passing their wisdom through generations, and why our future lies in protecting them. In his beloved book The Hidden Life of Trees, Peter Wohlleben revealed astonishing discoveries about the social networks of trees and how they communicate. Now, in The Power of Trees, he turns to their future, with a searing critique of forestry management, tree planting, and the exploitation of old...
Rising tropospheric ozone (O3) concentrations pose a critical threat to forest ecosystems. A stomatal flux-based risk evaluation methodology at leaf level was established recently in the context of the Convention on Long-Range Transboundary Air Pollution. This study demonstrates improvement and validation of the stomatal flux–effect approach for European beech and Norway spruce with results from the 8-year free-air O3 enrichment experiment at Kranzberg Forest (Germany). Based on the recommended O3/water vapour diffusivity ratio of 0.663, provisional corrected flux–effect functions for beech and spruce were deduced. Comparison of observed and modelled loss in annual growth under twice-ambient O3 exposure relative to whole-stem productivity under ambient O3 seems to confirm the Convention’s leaf-level stomatal flux approach and the associated response function for Norway spruce up to twice-ambient O3 exposure. For European beech, it must be emphasized that the Convention’s methodology may underestimate the risk for loss in whole-stem productivity.
None
None