You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of two conferences on Inverse Problems and Applications, held in 2012, to celebrate the work of Gunther Uhlmann. The first conference was held at the University of California, Irvine, from June 18-22, 2012, and the second was held at Zhejiang University, Hangzhou, China, from September 17-21, 2012. The topics covered include inverse problems in medical imaging, scattering theory, geometry and image processing, and the mathematical theory of cloaking, as well as methods related to inverse problems.
Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems. Inverse Boundary Spectral Problems
Inverse problems in wave propagation occur in geophysics, ocean acoustics, civil and environmental engineering, ultrasonic non-destructive testing, biomedical ultrasonics, radar, astrophysics, as well as other areas of science and technology. The papers in this volume cover these scientific and technical topics, together with fundamental mathematical investigations of the relation between waves and scatterers.
This volume presents the proceedings of a workshop on Inverse Problems and Applications and a special session on Inverse Boundary Problems and Applications. Inverse problems arise in practical situations, such as medical imaging, exploration geophysics, and non-destructive evaluation where measurements made in the exterior of a body are used to deduce properties of the hidden interior. A large class of inverse problems arise from a physical situation modeled by partial differential equations. The inverse problem is to determine some coefficients of the equation given some information about solutions. Analysis of such problems is a fertile area for interaction between pure and applied mathema...
A lively exploration of how invisibility has gone from science fiction to fact Is it possible for something or someone to be made invisible? This question, which has intrigued authors of science fiction for over a century, has become a headline-grabbing topic of scientific research. In this book, science writer and optical physicist Gregory J. Gbur traces the science of invisibility from its sci-fi origins in the nineteenth-century writings of authors such as H. G. Wells and Fitz James O'Brien to modern stealth technology, invisibility cloaks, and metamaterials. He explores the history of invisibility and its science and technology connections, including the discovery of the electromagnetic spectrum, the development of the atomic model, and quantum theory. He shows how invisibility has moved from fiction to reality, and he questions the hidden paths that lie ahead for researchers. This is not only the story of invisibility but also the story of humankind's understanding of the nature of light itself, and of the many fascinating figures whose discoveries advanced this knowledge.
Contains the proceedings of the Conference on Spectral Theory and Partial Differential Equations, held in honor of James Ralston's 70th Birthday. Papers cover important topics in spectral theory and partial differential equations such as inverse problems, both analytical and algebraic; minimal partitions and Pleijel's Theorem; spectral theory for a model in Quantum Field Theory; and beams on Zoll manifolds.
This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA...
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program.This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
This volume grew out of a workshop on spectral theory of differential operators and inverse problems held at the Research Institute for Mathematical Sciences (Kyoto University). The gathering of nearly 100 participants at the conference suggests the increasing interest in this field of research. The focus of the book is on spectral theory for differential operators and related inverse problems. It includes selected topics from the following areas: electromagnetism, elasticity, the Schrodinger equation, differential geometry, and numerical analysis. The material is suitable for graduate students and researchers interested in inverse problems and their applications.
Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, an...