You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The articles in this volume are based on talks given in a seminar at Austin during 1986-87. They range from those dealing with fresh research and discoveries to exposition and new proofs of older results. The main topics and themes include geometric and analytic properties of infinite-dimensional Banach spaces and their convex subsets as well as some aspects of Banach spaces associated with harmonic analysis and Banach algebras.
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. - Topics are covered from a historical perspective with biographical information on key contributors to the field - The text contains more than 500 exercises - Includes practical applications of the equations to problems in both engineering and physics
In the last 30 years, Approximation Theory has undergone wonderful develop ment, with many new theories appearing in this short interval. This book has its origin in the wish to adequately describe this development, in particular, to rewrite the short 1966 book of G. G. Lorentz, "Approximation of Functions." Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The outcome has been their "Constructive Approximation" (1993), volume 303 of this series. References to this book are given as, for example rCA, p.201]. Later, M. v. Golitschek and Y. Makovoz joined Lorentz to produce the present book, as a continuation of the first. Completeness has not been our goal. In some of the theories, our exposition offers a selection of important, representative theorems, some other cases are treated more systematically. As in the first book, we treat only approximation of functions of one real variable. Thus, functions of several variables, complex approximation or interpolation are not treated, although complex variable methods appear often.
None
This volume surveys the fields of approximation theory and functional analysis. Compiled in honour of G.G.Lorenz, regarded as the father of modern approximation theory, it consists of invited papers representing up-to-date research by leading mathematicians in these fields.
Numerical analysis is the subject of applied mathematics concerned mainly with using computers in evaluating or approximating mathematical models. As such, it is crucial to all applications of mathematics in science and engineering, as well as being an important discipline on its own. Acta Numerica surveys annually the most important developments in numerical analysis and scientific computing. The subjects and authors of the substantive survey articles are chosen by a distinguished international editorial board so as to report the most important developments in the subject in a manner accessible to the wider community of professionals with an interest in scientific computing.
The works of George G. Lorentz, spanning more than 60 years, have played a significant role in the development and evolution of mathematical analysis. The papers presented in this volume represent a selection of his best works, along with commentary from his students and colleagues.
Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.