Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 365

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2015-08-28
  • -
  • Publisher: Springer

The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.

Citizen Scholar
  • Language: en
  • Pages: 204

Citizen Scholar

What is the role of professional scholars in civic life? How and why should academics seek to reach audiences beyond their disciplines and institutions? Must there be tension between advancing along an academic career path and taking part in public conversations, or can these goals reinforce each other? This book is a practitioner’s guide to civic engagement today, showing current and aspiring social scientists how to build a career in the public sphere. Drawing from personal experience and in-depth research, Philip N. Cohen gives straightforward advice that acknowledges professional risks as well as rewards. He calls on readers to embrace the reciprocal relationship between professional s...

Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
  • Language: en
  • Pages: 429

Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models;...

Machine Learning and Knowledge Discovery in Databases: Research Track
  • Language: en
  • Pages: 789

Machine Learning and Knowledge Discovery in Databases: Research Track

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models;...

Advanced Data Mining and Applications
  • Language: en
  • Pages: 437

Advanced Data Mining and Applications

  • Type: Book
  • -
  • Published: 2011-12-15
  • -
  • Publisher: Springer

The two-volume set LNAI 7120 and LNAI 7121 constitutes the refereed proceedings of the 7th International Conference on Advanced Data Mining and Applications, ADMA 2011, held in Beijing, China, in December 2011. The 35 revised full papers and 29 short papers presented together with 3 keynote speeches were carefully reviewed and selected from 191 submissions. The papers cover a wide range of topics presenting original research findings in data mining, spanning applications, algorithms, software and systems, and applied disciplines.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 770

Machine Learning and Knowledge Discovery in Databases

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and ...

The Science of Science
  • Language: en
  • Pages: 315

The Science of Science

This is the first comprehensive overview of the exciting field of the 'science of science'. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists, policy makers, and administrators with an interest in the wider scientific enterprise.

Machine Learning and Knowledge Discovery in Databases. Research Track
  • Language: en
  • Pages: 857

Machine Learning and Knowledge Discovery in Databases. Research Track

The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and f...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 669

Machine Learning and Knowledge Discovery in Databases

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge grap...

Representation Learning
  • Language: en
  • Pages: 175

Representation Learning

This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.