You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From conception to realization, Microrobotics: Methods and Applications covers all aspects of miniaturized systems that physically interact and manipulate objects at the microscale. It provides a solid understanding of this multidisciplinary field, which combines areas of materials science, mechanical engineering, and applied physics. Requiring no
Explores State-of-the-Art Work from the World's Foremost Scientists, Engineers, Educators, and Practitioners in the FieldWhy use smart materials?Since most smart materials do not add mass, engineers can endow structures with built-in responses to a myriad of contingencies. In their various forms, these materials can adapt to their environments by c
None
In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS devices. It then covers innovative optical actuator technologies that have been developed for many ap...
Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
None
In Light Driven Micromachines, the fundamental principles and unique characteristics of light driven material structures, simple mechanisms and integrated machines are explored. Very small light driven systems provide a number of interesting features and unique design opportunities because streams of photons deliver energy into the system and provide the control signal used to regulate the response of the micron sized device. Through innovative material design and clever component fabrication, these optically powered tiny machines can be created to perform mechanical work when exposed to varying light intensity, wavelength, phase, and/or polarization. The book begins with the scientific back...
This work contains experimental, theoretical, and modeling research papers from a December 2003 symposium on the mechanical behavior of thin films, touching on topics in stress evolution, modeling stresses and film instability, deformation and adhesion, film fracture and fatigue, processing and structure, indentation testing, mechanical properties, properties and performance, and multilayers and nanolaminates. Some specific topics include fracture patterns in thin films and multilayers, thin film herringbone buckling patterns, the effect of oxygen on adhesion of thin copper films to silicon nitride, and the effects of stress amplitude on the fatigue of polysilicon. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com)
Kelley (Jefferson Lab, US), Kreutz (U. of Technology Aachen, Germany), Li (Panasonic Boston Laboratory, US), and Pique (Naval Research Laboratory, US) present 29 papers from the November/December 2004 Materials Research Society symposium of the same name, organized with the goal of bringing together researchers exploring the use of ultrafast lasers for materials synthesis, processing, and analysis. The sessions of the symposium covered fundamental science and technology of ultrafast lasers, materials characterization, laser ablation and deposition, micromachining and nanostructuring, synthesis of nanoparticles and nanowiries, and direct-writing of waveguides in transparent materials. Specific topics selected from the ten invited papers include phase change mechanisms in pulsed laser-matter interaction, high power THz generation form sub- ps bunches of relativistic electrons, micro- and nano-structured optical fibers as artificial media for amplification of light, modification and color markings in glasses by UV laser radiation, and generation of new nanomaterials by interfering femtosecond laser processing. Annotation :2005 Book News, Inc., Portland, OR (booknews.com).