Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Hamilton-Jacobi-Bellman Equations
  • Language: en
  • Pages: 210

Hamilton-Jacobi-Bellman Equations

Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of ...

6GN for Future Wireless Networks
  • Language: en
  • Pages: 740

6GN for Future Wireless Networks

This book constitutes the proceedings of the 4th International Conference on 6G for Future Wireless Networks, 6GN 2021, held in Huizhou, China, in October 2021. The 63 full papers were selected from 136 submissions and present the state of the art and practical applications of 6G technologies. The papers are arranged thematically in tracks as follows: Advanced Communication and Networking Technologies for 5G/6G Networks; Advanced Signal Processing Technologies for 5G/6G Networks; and Educational Changes in The Age of 5G/6G.

Control and Optimization with PDE Constraints
  • Language: en
  • Pages: 221

Control and Optimization with PDE Constraints

Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton–Jacobi–Bellmann equations, issues in optimization and control of stochastic partial differential equations, reduced-order models and domain decomposition, discretization error estimates for optimal control problems, and control of quantum-dynamical systems. These contributions originate from the “International Workshop on Control and Optimization of PDEs” in Mariatrost in October 2011. This book is an excellent resource for students and researchers in control or optimization of differential equations. Readers interested in theory or in numerical algorithms will find this book equally useful.

Schur-Convex Functions and Inequalities
  • Language: en
  • Pages: 236

Schur-Convex Functions and Inequalities

This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.

The Radon Transform
  • Language: en
  • Pages: 348

The Radon Transform

In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.

Combinatorics and Finite Fields
  • Language: en
  • Pages: 356

Combinatorics and Finite Fields

Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

Discrepancy Theory
  • Language: en
  • Pages: 228

Discrepancy Theory

The contributions in this book focus on a variety of topics related to discrepancy theory, comprising Fourier techniques to analyze discrepancy, low discrepancy point sets for quasi-Monte Carlo integration, probabilistic discrepancy bounds, dispersion of point sets, pair correlation of sequences, integer points in convex bodies, discrepancy with respect to geometric shapes other than rectangular boxes, and also open problems in discrepany theory.

Space-Time Methods
  • Language: en
  • Pages: 262

Space-Time Methods

This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.

Maxwell’s Equations
  • Language: en
  • Pages: 446

Maxwell’s Equations

This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.

Multiphysics Phase-Field Fracture
  • Language: en
  • Pages: 358

Multiphysics Phase-Field Fracture

This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.