You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present collection is the very first contribution of this type in the field of sparse recovery. Compressed sensing is one of the important facets of the broader concept presented in the book, which by now has made connections with other branches such as mathematical imaging, inverse problems, numerical analysis and simulation. The book consists of four lecture notes of courses given at the Summer School on "Theoretical Foundations and Numerical Methods for Sparse Recovery" held at the Johann Radon Institute for Computational and Applied Mathematics in Linz, Austria, in September 2009. This unique collection will be of value for a broad community and may serve as a textbook for graduate courses. From the contents: "Compressive Sensing and Structured Random Matrices" by Holger Rauhut "Numerical Methods for Sparse Recovery" by Massimo Fornasier "Sparse Recovery in Inverse Problems" by Ronny Ramlau and Gerd Teschke "An Introduction to Total Variation for Image Analysis" by Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga and Thomas Pock
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from applied and computational geometry to computer algebra methods used for total variation energy minimization.
The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics. The books of this series are addressed to both specialists and advanced students. Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board. Managing EditorUlrich Langer, Johannes Kepler University Linz, Austria Editorial BoardHansj rg Albrecher, University of Lausanne, SwitzerlandRonald H. W. Hoppe, University of Houston, USAKarl Kunisch, RICAM, Linz, Austria; University of Graz, AustriaHarald Niederreiter, RICAM, Linz, AustriaChristian Schmeiser, University of Vienna, Austria
This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilt...
Advances in learning-based methods are revolutionizing several fields in applied mathematics, including inverse problems, resulting in a major paradigm shift towards data-driven approaches. This volume, which is inspired by this cutting-edge area of research, brings together contributors from the inverse problem community and shows how to successfully combine model- and data-driven approaches to gain insight into practical and theoretical issues.
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
This unique book presents real world success stories of collaboration between mathematicians and industrial partners, showcasing first-hand case studies, and lessons learned from the experiences, technologies, and business challenges that led to the successful development of industrial solutions based on mathematics. It shows the crucial contribution of mathematics to innovation and to the industrial creation of value, and the key position of mathematics in the handling of complex systems, amplifying innovation. Each story describes the challenge that led to the industrial cooperation, how the challenge was approached and how the solutions were achieved and implemented. When brought together...