You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Contains contributions from the INdAM School on Symmetry for Elliptic PDEs, which marked ""30 years after a conjecture of De Giorgi, and related problems"" and provided an opportunity for experts to discuss the state of the art and open questions on the subject.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International C...
This volume presents the proceedings of the international conference on Combinatorial and Geometric Representation Theory. In the field of representation theory, a wide variety of mathematical ideas are providing new insights, giving powerful methods for understanding the theory, and presenting various applications to other branches of mathematics. Over the past two decades, there have been remarkable developments. This book explains the strong connections between combinatorics, geometry, and representation theory. It is suitable for graduate students and researchers interested in representation theory.
While rooted in controlled PDE systems, this 2005 AMS-IMS-SIAM Summer Research Conference sought to reach out to a rather distinct, yet scientifically related, research community in mathematics interested in PDE-based dynamical systems. Indeed, this community is also involved in the study of dynamical properties and asymptotic long-time behavior (in particular, stability) of PDE-mixed problems. It was the editors' conviction that the time had become ripe and the circumstances propitious for these two mathematical communities--that of PDE control and optimization theorists and that of dynamical specialists--to come together in order to share recent advances and breakthroughs in their respecti...
Covers various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. This book outlines connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic.
In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p=h. The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H (u ? ,C) of the small quantum group.
This volume contains contributions from the NSF-CBMS Conference on Tropical Geometry and Mirror Symmetry, which was held from December 13-17, 2008 at Kansas State University in Manhattan, Kansas. --
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
This book offers a presentation of some new trends in operator theory and operator algebras, with a view to their applications. It consists of separate papers written by some of the leading practitioners in the field. The content is put together by the three editors in a way that should help students and working mathematicians in other parts of the mathematical sciences gain insight into an important part of modern mathematics and its applications. While different specialist authors are outlining new results in this book, the presentations have been made user friendly with the aid of tutorial material. In fact, each paper contains three things: a friendly introduction with motivation, tutorial material, and new research. The authors have strived to make their results relevant to the rest of mathematics. A list of topics discussed in the book includes wavelets, frames and their applications, quantum dynamics, multivariable operator theory, $C*$-algebras, and von Neumann algebras. Some longer papers present recent advances on particular, long-standing problems such as extensions and dilations, the Kadison-Singer conjecture, and diagonals of self-adjoint operators.