You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The ability to construct proofs is one of the most challenging aspects of the world of mathematics. It is, essentially, the defining moment for those testing the waters in a mathematical career. Instead of being submerged to the point of drowning, readers of Mathematical Thinking and Writing are given guidance and support while learning the language of proof construction and critical analysis. Randall Maddox guides the reader with a warm, conversational style, through the task of gaining a thorough understanding of the proof process, and encourages inexperienced mathematicians to step up and learn how to think like a mathematician. A student's skills in critical analysis will develop and become more polished than previously conceived. Most significantly, Dr. Maddox has the unique approach of using analogy within his book to clarify abstract ideas and clearly demonstrate methods of mathematical precision.
I fell in love with integral equations about twenty years ago when I was working on my thesis, and I am still attracted by their mathematical beauty. This book will try to stimulate the reader to share this love with me. Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the same weight. The first part provides the basic Riesz-Fredholm theory for equa tions of the second kind with compact opertors in dual systems including all functional analytic concepts necessary for developing this theory. The second part then illustrates the cla...
When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory ...
Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its m...
This award-winning textbook targets the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The author’s goal is to make combinatorics more accessible to encourage student interest and to expand the number of students studying this rapidly expanding field. The book first deals with basic counting principles, compositions and partitions, and generating functions. It then focuses on the structure of permutations, graph enumeration, and extremal combinatorics. Lastly, the text discusses supplemental topics, including error-correcting codes, properties of sequences, and magic squares. Updates to the Third Edition include: Quick Check...
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.
The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on “Representation Theory of Lie Groups” from July 2002 to January 2003. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field.This invaluable volume collects the expanded lecture notes of those tutorials. The topics covered include uncertainty principles for locally compact abelian groups, fundamentals of representations of p-adic groups, the Harish-Chandra-Howe local character expansion, classification of the square-integrable representations modulo cuspidal data, Dirac cohomology and Vogan's conjecture, multiplici...
This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. No other texts have come close to discuss quantum theory in terms of depth of coverage. The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities.