You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"What are the recent developments in the field of Metrology?" International leading experts answer this question providing both state of the art presentation and a road map to the future of measurement science. The book is organized in six sections according to the areas of expertise, namely: Introduction; Length, Distance and Surface; Voltage, Current and Frequency; Optics; Time and Relativity; Biology and Medicine. Theoretical basis and applications are explained in accurate and comprehensive manner, providing a valuable reference to researchers and professionals.
This book focuses on polarization microscopy, a powerful optical tool used to study anisotropic properties in biomolecules, and its enormous potential to improve diagnostic tools for various biomedical research. The interaction of polarized light with normal and abnormal regions of tissue reveals structural information associated with its pathological condition. Diagnosis using conventional microscopy can be time-consuming, as pathologists require an hour to freeze and stain tissue slices from suspected patients. In comparison, polarization microscopy more quickly distinguishes abnormal tissue and provides better microstructural information of samples, even in the absence of staining. This b...
The Handbook of Photonics for Biomedical Science analyzes achievements, new trends, and perspectives of photonics in its application to biomedicine. With contributions from world-renowned experts in the field, the handbook describes advanced biophotonics methods and techniques intensively developed in recent years.Addressing the latest problems in
This book gathers the proceedings of the 4th International Conference on Nanotechnologies and Biomedical Engineering, held on September 18-21, 2019, in Chisinau, Republic of Moldova. It continues the tradition of the previous conference proceedings, thus reporting on both fundamental and applied research at the interface between nanotechnologies and biomedical engineering. Topics include: developments in bio-micro/nanotechnologies and devices; biomedical signal processing; biomedical imaging; biomaterials for biomedical applications; biomimetics; bioinformatics and e-health, and advances in a number of related areas. The book offers a timely snapshot of cutting-edge, multidisciplinary research and developments in the field of biomedical and nano-engineering.
This monograph examines selected applications of the optical correlation approaches and techniques in diverse problems of modern optics. These problems include linear singular optics of monochromatic, fully spatially coherent light fields; phase singularities in polychromatic (white-light) optical fields; optical correlation techniques for diagnostics of rough surfaces; and Mueller-matrix images of biological tissues and their statistical and fractal structures.
In the modern era of scientific and technological development, the role of measurements and metrology in scientific research is becoming more and more important due to the increase in the testing of various products. Moreover, requirements for the accuracy and reliability of measurement results are increasing significantly and their ranges are expanding. Improving measurement accuracy allows us to identify the shortcomings of certain technological processes and either eliminate them or reduce their influence. This leads to better-quality products and contributes to saving energy and other resources, as well as raw materials and materials. This book discusses relevant aspects of practical metrological activity to establish traceability of measurements while increasing their accuracy and reliability. It also presents procedures for the calibration and testing of measuring instruments.
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields ha...