You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networ...
Highly Linear Integrated Wideband Amplifiers: Design and Analysis Techniques for Frequencies from Audio to RF deals with the complicated issues involved in the design of high-linearity integrated wideband amplifiers for different operating frequencies. The book demonstrates these principles using a number of high-performance designs. New topologies for high linearity are presented, as well as a novel method for estimating the intermodulation distortion of a wideband signal. One of the most exciting results presented is an enhanced feedback configuration called feedback boosting that is capable of very low distortion. Also important is a statistical method for relating the intermodulation dis...
Symbolic Analysis in Analog Integrated Circuit Design provides an introduction to computer-aided circuit analysis and presents systematic methods for solving linear (i.e. small-signal) and nonlinear circuit problems, which are illustrated by concrete examples. Computer-aided symbolic circuit analysis is useful in analog integrated circuit design. Analytic expressions for the network transfer functions contain information that is not provided by a numerical simulation result. However, these expressions are generally extremely long and difficult to interpret; therefore, it is necessary to be able to approximate them guided by the magnitude of the individual circuit parameters. Engineering has ...
Low-Voltage Low-Power Analog Integrated Circuits brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Low-Voltage Low-Power Analog Integrated Circuits serves as an excellent reference, providing insight into some of the most important issues in the field.
Learning on Silicon combines models of adaptive information processing in the brain with advances in microelectronics technology and circuit design. The premise is to construct integrated systems not only loaded with sufficient computational power to handle demanding signal processing tasks in sensory perception and pattern recognition, but also capable of operating autonomously and robustly in unpredictable environments through mechanisms of adaptation and learning. This edited volume covers the spectrum of Learning on Silicon in five parts: adaptive sensory systems, neuromorphic learning, learning architectures, learning dynamics, and learning systems. The 18 chapters are documented with examples of fabricated systems, experimental results from silicon, and integrated applications ranging from adaptive optics to biomedical instrumentation. As the first comprehensive treatment on the subject, Learning on Silicon serves as a reference for beginners and experienced researchers alike. It provides excellent material for an advanced course, and a source of inspiration for continued research towards building intelligent adaptive machines.
Today digital signal processing systems use advanced CMOS technologies requiring the analog-to-digital converter to be implemented in the same (digital) technology. Such an implementation requires special circuit techniques. Furthermore the susceptibility of converters to ground bounce or digital noise is an important design criterion. In this part different converters and conversion techniques are described that are optimized for receiver applications. Part II, Sensor and Actuator Interfaces, interfaces for sensors and actuators shape the gates through which information is acquired from the real world into digital information systems, and vice versa. The interfaces should include analog signal conditioning, analog-to-digital conversion, digital bus interfaces and data-acquisition networks. To simplify the use of data-acquisition systems additional features should be incorporated, like self-test, and calibration
CMOS Current Amplifiers presents design strategies for high performance current amplifiers based on CMOS technology. After an introduction to various architectures of operational amplifiers, the operating principles of the current amplifier are outlined. This book provides the reader with simple and compact design equations for use in a pencil and paper design and the following simulation step. Chapter 1 introduces the general aspects of current amplifiers. After a preliminary classification of operational amplifiers, ideal blocks and models are discussed for different architectures and a first high-level comparison is made between traditional amplifiers and current amplifiers. Analysis and ...
The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.
Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of t...
Log-domain and translinear filters provide a competitive alternative to the challenges of ever increasing low-voltage, low-power and high frequency demands in the area of continuous-time filters. Since translinear filters are fundamentally large-signal linear, they are capable of realizing a large dynamic range in combination with excellent tunability characteristics. Large-signal linearity is achieved by exploiting the accurate exponential behavior of the bipolar transistor or the subthreshold MOS transistor. A generalization of the dynamic translinear principle exploiting the square law behavior of the MOS transistor is theoretically possible, but not practically relevant. Translinear and ...