You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
I am very pleased to play even a small part in the publication of this book on the SIGNAL language and its environment POLYCHRONY. I am sure it will be a s- ni?cant milestone in the development of the SIGNAL language, of synchronous computing in general, and of the data?ow approach to computation. In data?ow, the computation takes place in a producer–consumer network of - dependent processing stations. Data travels in streams and is transformed as these streams pass through the processing stations (often called ?lters). Data?ow is an attractive model for many reasons, not least because it corresponds to the way p- duction,transportation,andcommunicationare typicallyorganizedin the real wor...
Data Intensive Computing refers to capturing, managing, analyzing, and understanding data at volumes and rates that push the frontiers of current technologies. The challenge of data intensive computing is to provide the hardware architectures and related software systems and techniques which are capable of transforming ultra-large data into valuable knowledge. Handbook of Data Intensive Computing is written by leading international experts in the field. Experts from academia, research laboratories and private industry address both theory and application. Data intensive computing demands a fundamentally different set of principles than mainstream computing. Data-intensive applications typically are well suited for large-scale parallelism over the data and also require an extremely high degree of fault-tolerance, reliability, and availability. Real-world examples are provided throughout the book. Handbook of Data Intensive Computing is designed as a reference for practitioners and researchers, including programmers, computer and system infrastructure designers, and developers. This book can also be beneficial for business managers, entrepreneurs, and investors.
This book describes the trends, challenges and solutions in computing use for scientific research and development within different domains in Africa, such as health, agriculture, environment, economy, energy, education and engineering. The benefits expected are discussed by a number of recognized, domain-specific experts, with a common theme being computing as solution enabler. This book is the first document providing such a representative up-to-date view on this topic at the continent level.
This handbook brings together diverse domains and technical competences of Model Based Systems Engineering (MBSE) into a single, comprehensive publication. It is intended for researchers, practitioners, and students/educators who require a wide-ranging and authoritative reference on MBSE with a multidisciplinary, global perspective. It is also meant for those who want to develop a sound understanding of the practice of systems engineering and MBSE, and/or who wish to teach both introductory and advanced graduate courses in systems engineering. It is specifically focused on individuals who want to understand what MBSE is, the deficiencies in current practice that MBSE overcomes, where and how...
Cyber-physical systems (CPSs) consist of software-controlled computing devices communicating with each other and interacting with the physical world through sensors and actuators. Because most of the functionality of a CPS is implemented in software, the software is of crucial importance for the safety and security of the CPS. This book presents principle-based engineering for the development and operation of dependable software. The knowledge in this book addresses organizations that want to strengthen their methodologies to build safe and secure software for mission-critical cyber-physical systems. The book: • Presents a successful strategy for the management of vulnerabilities, threats, and failures in mission-critical cyber-physical systems; • Offers deep practical insight into principle-based software development (62 principles are introduced and cataloged into five categories: Business & organization, general principles, safety, security, and risk management principles); • Provides direct guidance on architecting and operating dependable cyber-physical systems for software managers and architects.
Perhaps nothing characterizes the inherent heterogeneity in embedded sys tems than the ability to choose between hardware and software implementations of a given system function. Indeed, most embedded systems at their core repre sent a careful division and design of hardware and software parts of the system To do this task effectively, models and methods are necessary functionality. to capture application behavior, needs and system implementation constraints. Formal modeling can be valuable in addressing these tasks. As with most engineering domains, co-design practice defines the state of the it seeks to add new capabilities in system conceptualization, mod art, though eling, optimization a...
The fourth edition of the European Conference on Model-Driven Architecture – Foundations and Applications (ECMDA-FA 2008) was dedicated to furthering the state of knowledge and fostering the industrialization of the model-driven architecture (MDA) methodology. MDA is an initiative proposed by the - ject Management Group (OMG) for platform-generic software development. It promotes the use of models in the speci?cation, design, analysis, synthesis, - ployment, and evolution of complex software systems. ECMDA-FA 2008 focused on engaging key European and international - searchers and practitioners in a dialogue which will result in a stronger, more e?cientindustry,producingmorereliablesoftware...
Heterogeneous systems on chip (HeSoCs) combine general-purpose, feature-rich multi-core host processors with domain-specific programmable many-core accelerators (PMCAs) to unite versatility with energy efficiency and peak performance. By virtue of their heterogeneity, HeSoCs hold the promise of increasing performance and energy efficiency compared to homogeneous multiprocessors, because applications can be executed on hardware that is designed for them. However, this heterogeneity also increases system complexity substantially. This thesis presents the first research platform for HeSoCs where all components, from accelerator cores to application programming interface, are available under per...
This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Scientific Engineering of Distributed Java Applications, FIDJI 2003, held in Luxembourg-Kirchberg, Luxembourg in November 2003. The 213 revised full papers presented together with abstracts of two invited contributions were carefully selected during two round of reviewing and revision from 29 submissions. Among the topics addressed are Java-enabled service gateways, mobility in distributed settings, XML, embedded Java software, interception services, mobile agents, error management, software model engineering, distributed composite objects, cooperative applications, distributed mobile applications, service-based software architectures, and distributed Java programs.
Embedded software is ubiquitous today. There are millions of lines of embedded code in smart phones, and even more in systems responsible for automotive control, avionics control, weapons control and space missions. Some of these are safety-critical systems whose correctness, timely response, and reliability are of paramount importance. These requirement pose new challenges to system designers. This necessitates that a proper design science, based on "constructive correctness" be developed. Correct-by-construction design and synthesis of embedded software is done in a way so that post-development verification is minimized, and correct operation of embedded systems is maximized. This book presents the state of the art in the design of safety-critical, embedded software. It introduced readers to three major approaches to specification driven, embedded software synthesis/construction: synchronous programming based approaches, models of computation based approaches, and an approach based on concurrent programming with a co-design focused language. It is an invaluable reference for practitioners and researchers concerned with improving the product development life-cycle.