You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.·The book is oriented to a general r...
Provides guidelines for ethical decision making in business that are philosophically sound and strategically advantageous. This title explains the concepts of basic and derivative rights in a way that can enable managers to identify those ethical duties that must be met in order to morally justify the pursuit of profit.
Spinodal Decomposition in Binary Polymer Blends: Monte Carlo Simulations and Dynamic Mean Field Theory.- Dynamics of Convection and Dynamos in Rotating Spheres.- Recent Developments in IMD: Interactions for Covalent and Metallic Systems.- Finite Difference Modelling of Seismic Wave Phenomena within the Earth's Upper Mantle.- Collisional Dynamics of Black Holes and Star Clusters Using Massively Parallel Computing.- Three-Dimensional Direct and Inverse Electromagnetic Scattering.- Precession Driven Flow in Ellipsoidal Cavities.- The Computation of Highly Exited Hyperbolic 3D-eigenmodes and its Application to Cosmology.- Fluid Jet Simulations using Smoothed Particle Hydrodynamics.- Spectral Pro...
The book is devoted to the consideration of the different processes taking place in thin films and at surfaces. Since the most important physico-chemical phenomena in such media are accompanied by the rearrangement of an intra- and intermolecular coordinates and consequently a surrounding molecular ensemble, the theory of radiationless multi-vibrational transitions is used for its description. The second part of the book considers the numerous surface phenomena. And in the third part is described the preparation methods and characteristics of different types of thin films. Both experimental and theoretical descriptions are represented. Media rearrangement coupled with the reagent transformat...
Physics of Thin Films is one of the longest running continuing series in thin film science, consisting of 25 volumes since 1963. The series contains quality studies of the properties of various thin films materials and systems. In order to be able to reflect the development of today's science and to cover all modern aspects of thin films, the series, starting with Volume 20, has moved beyond the basic physics of thin films. It now addresses the most important aspects of both inorganic and organic thin films, in both their theoretical and their technological aspects. Volume 29 consists of chapters pulled from Hari Singh Nalwa's forthcoming Handbook of Thin Film Materials (ISBN: 0-12-512908-4). The chapters were selected because they deal exclusively with amorphous film structures and because they have a common relevance to semiconductor, or electronic, devices and circuits. These are subjects not yet stressed in the Thin Films series.
Frontiers of Thin Film Technology, Volume 28 focuses on recent developments in those technologies that are critical to the successful growth, fabrication, and characterization of newly emerging solid-state thin film device architectures. Volume 28 is a condensed sampler of the Handbook for use by professional scientists, engineers, and students involved in the materials, design, fabrication, diagnostics, and measurement aspects of these important new devices.
Ceramics are, in a general definition, materials that consist of man-made, inorganic, non-metallic solid material - either existing in a crystalline state or non-crystalline state (i.e., glasses). Materials characterization techniques are used to ensure the structural and surface integrity of ceramics for their use in a wide variety of applications, from thermal resistance to advanced electronic and optical technologies like fiber optics to structural uses. This book presents those techniques along with views on future trends in ceramics processing and advanced characterization technologies particularly appropriate to ceramics materials. Readers will find more on: Ceramic Materials preparation routes, including powder preparation by solution techniques and gas-phase techniques Formation techniques for ceramic films and coatings, thick films and bulk ceramics A review of ceramic microstructure, reactions, phase behavior, mechanical properties and electronic and magnetic ceramics
This volume provides the first comprehensive look at a pivotal new technology in integrated circuit fabrication. For some time researchers have sought alternate processes for interconnecting the millions of transistors on each chip because conventional physical vapor deposition can no longer meet the specifications of today's complex integrated circuits. Out of this research, ionized physical vapor deposition has emerged as a premier technology for the deposition of thin metal films that form the dense interconnect wiring on state-of-the-art microprocessors and memory chips.For the first time, the most recent developments in thin film deposition using ionized physical vapor deposition (I-PVD...
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.