You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable isotope analyses, Earth systems science and Earth system history, and accelerating exploration of other planets within...
Neurogenetics is intended for any physician or scientist who manages patients with inherited diseases of the nervous system. It presents the clinical phenotypes of the most commonly inherited neurologic diseases, and their molecular pathogenesis, followed by a description of the appropriate tests to be used in diagnosis. Two introductory chapters familiarize the nongeneticist with medical genetic terminology and molecular genetic techniques useful in the analysis of genetic disease and genetic testing. Subsequent chapters examine major neurologic disorders caused by single defects, as well as disease phenotypes such as Alzheimer disease or amyotrophic lateral sclerosis which may be caused by...
The authors assemble a fascinating collection of topics from analytic number theory that provides an introduction to the subject with a very clear and unique focus on the anatomy of integers, that is, on the study of the multiplicative structure of the integers. Some of the most important topics presented are the global and local behavior of arithmetic functions, an extensive study of smooth numbers, the Hardy-Ramanujan and Landau theorems, characters and the Dirichlet theorem, the $abc$ conjecture along with some of its applications, and sieve methods. The book concludes with a whole chapter on the index of composition of an integer. One of this book's best features is the collection of problems at the end of each chapter that have been chosen carefully to reinforce the material. The authors include solutions to the even-numbered problems, making this volume very appropriate for readers who want to test their understanding of the theory presented in the book.
"The Differential Diagnosis of Chorea provides a comprehensive account of the various neurological conditions, both genetic and acquired, that lead to this involuntary movement disorder.
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number f...
This volume is based on the successful 6th China-Japan Seminar on number theory that was held in Shanghai Jiao Tong University in August 2011. It is a compilation of survey papers as well as original works by distinguished researchers in their respective fields. The topics range from traditional analytic number theory — additive problems, divisor problems, Diophantine equations — to elliptic curves and automorphic L-functions. It contains new developments in number theory and the topics complement the existing two volumes from the previous seminars which can be found in the same book series.
Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.