You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Aircraft Design explores fixed winged aircraft design at the conceptual phase of a project. Designing an aircraft is a complex multifaceted process embracing many technical challenges in a multidisciplinary environment. By definition, the topic requires intelligent use of aerodynamic knowledge to configure aircraft geometry suited specifically to the customer's demands. It involves estimating aircraft weight and drag and computing the available thrust from the engine. The methodology shown here includes formal sizing of the aircraft, engine matching, and substantiating performance to comply with the customer's demands and government regulatory standards. Associated topics include safety issues, environmental issues, material choice, structural layout, understanding flight deck, avionics, and systems (for both civilian and military aircraft). Cost estimation and manufacturing considerations are also discussed. The chapters are arranged to optimize understanding of industrial approaches to aircraft design methodology. Example exercises from the author's industrial experience dealing with a typical aircraft design are included.
Provides a Comprehensive Introduction to Aircraft Design with an Industrial Approach This book introduces readers to aircraft design, placing great emphasis on industrial practice. It includes worked out design examples for several different classes of aircraft, including Learjet 45, Tucano Turboprop Trainer, BAe Hawk and Airbus A320. It considers performance substantiation and compliance to certification requirements and market specifications of take-off/landing field lengths, initial climb/high speed cruise, turning capability and payload/range. Military requirements are discussed, covering some aspects of combat, as is operating cost estimation methodology, safety considerations, environm...
Textbook introducing the fundamentals of aircraft performance using industry standards and examples: bridging the gap between academia and industry Provides an extensive and detailed treatment of all segments of mission profile and overall aircraft performance Considers operating costs, safety, environmental and related systems issues Includes worked examples relating to current aircraft (Learjet 45, Tucano Turboprop Trainer, Advanced Jet Trainer and Airbus A320 types of aircraft) Suitable as a textbook for aircraft performance courses
This book provides an accessible introduction to the fundamentals of civil and military aircraft design. Giving a largely descriptive overview of all aspects of the design process, this well-illustrated account provides an insight into the requirements of each specialist in an aircraft design team. After discussing the need for new designs, the text assesses the merits of different aircraft shapes from micro-lights and helicopters to super-jumbos and V/STOL aircraft. Following chapters explore structures, airframe systems, avionics and weapons systems. Later chapters examine the costs involved in the acquisition and operation of new aircraft, aircraft reliability and maintainability, and a variety of unsuccessful projects to see what conclusions can be drawn. Three appendices and a bibliography give a wealth of useful information, much not published elsewhere, including simple aerodynamic formulae, aircraft, engine and equipment data and a detailed description of a parametric study of a 500-seat transport aircraft.
This book captures some of Pólya's excitement and vision. Its distinctive feature is the stress on the history of certain elementary chapters of science; these can be a source of enjoyment and deeper understanding of mathematics even for beginners who have little, or perhaps no, knowledge of physics.
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stabil...
This new volume looks at the evolution and challenges of sustainable agriculture, a field that is growing in use and popularity, discussing some of the important ideas, practices, and policies that are essential to an effective sustainable agriculture strategy. The book features 25 chapters written by experts in crop improvement, natural resource management, crop protection, social sciences, and product development. The volume provides a good understanding of the use of sustainable agriculture and the sustainable management of agri-horticultural crops, focusing on eco-friendly approaches, such as the utilization of waste materials. Topics include ecofriendly plant protection measures, climat...
Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem...
Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB® code. Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surroun...
An introduction to orbital mechanics and spacecraft attitude dynamics Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author a noted expert in the field covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made compute...