You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.
This book grew out of a graduate course at ETH Zurich during the spring 2011 term. It explores various links between such notions as occupation times of Markov chains, Gaussian free fields, Poisson point processes of Markovian loops, and random interlacements, which have been the object of intensive research over the last few years. These notions are developed in the convenient setup of finite weighted graphs endowed with killing measures. This book first discusses elements of continuous-time Markov chains, Dirichlet forms, potential theory, together with some consequences for Gaussian free fields. Next, isomorphism theorems and generalized Ray-Knight theorems, which relate occupation times of Markov chains to Gaussian free fields, are presented. Markovian loops are constructed and some of their key properties derived. The field of occupation times of Poisson point processes of Markovian loops is investigated. Of special interest are its connection to the Gaussian free field, and a formula of Symanzik. Finally, links between random interlacements and Markovian loops are discussed, and some further connections with Gaussian free fields are mentioned.
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my ...
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my ...
This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to ran...
The title “Random Explorations” has two meanings. First, a few topics of advanced probability are deeply explored. Second, there is a recurring theme of analyzing a random object by exploring a random path. This book is an outgrowth of lectures by the author in the University of Chicago Research Experiences for Undergraduate (REU) program in 2020. The idea of the course was to expose advanced undergraduates to ideas in probability research. The book begins with Markov chains with an emphasis on transient or killed chains that have finite Green's function. This function, and its inverse called the Laplacian, is discussed next to relate two objects that arise in statistical physics, the lo...
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.
Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice • J. Fröhlich: Mathematical Aspects of the Quantum Hall Effect • M. Giaquinta: Analytic and Geometric Aspects of Variational Problems for Vector Valued Mappings • U. Hamenstädt: Harmonic Measures for Leafwise Elliptic Operators Along Foliations • M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology • S.B. Kuksin: KAM-Theory for Partial Differential Equations • M. Laczkovich: Paradoxical Decompositions: A Survey of Recent Results • J.-F. Le Gall: A Path-Valued Markov Process and its Connections with Partial Differential Equations • I. Madsen: The Cyclotomic Trace in Algebraic K-Theory • A.S....