You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical Explorations follows on from the author's previous book, Creative Mathematics, in the same series, and gives the reader experience in working on problems requiring a little more mathematical maturity. The author's main aim is to show that problems are often solved by using mathematics that is not obviously connected to the problem, and readers are encouraged to consider as wide a variety of mathematical ideas as possible. In each case, the emphasis is placed on the important underlying ideas rather than on the solutions for their own sake. To enhance understanding of how mathematical research is conducted, each problem has been chosen not for its mathematical importance, but because it provides a good illustration of how arguments can be developed. While the reader does not require a deep mathematical background to tackle these problems, they will find their mathematical understanding is enriched by attempting to solve them.
Describing two cornerstones of mathematics, this basic textbook presents a unified approach to algebra and geometry. It covers the ideas of complex numbers, scalar and vector products, determinants, linear algebra, group theory, permutation groups, symmetry groups and aspects of geometry including groups of isometries, rotations, and spherical geometry. The book emphasises the interactions between topics, and each topic is constantly illustrated by using it to describe and discuss the others. Many ideas are developed gradually, with each aspect presented at a time when its importance becomes clearer. To aid in this, the text is divided into short chapters, each with exercises at the end. The related website features an HTML version of the book, extra text at higher and lower levels, and more exercises and examples. It also links to an electronic maths thesaurus, giving definitions, examples and links both to the book and to external sources.
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been writ...
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
Text for advanced undergraduates and graduate students provides geometrical insights by covering angles, basic complex analysis, and interactions with plane topology while focusing on concepts of angle and winding numbers. 1979 edition.
How do mathematicians approach a problem, explore the possibilities, and develop an understanding of a whole area around it? The issue is not simply about obtaining 'the answer'; rather, Beardon explains that a mathematical problem is just one of many related ones that should be simultaneously investigated and discussed at various levels, and that understanding this is a crucial step in becoming a creative mathematician. The book begins with some good advice about procedure, presentation, and organization that will benefit every mathematician, budding, teaching or practiced. In the rest of the book, Beardon presents a series of simple problems, then, through discussion, consideration of special cases, computer experiments, and so on, the reader is taken through these same problems, but at an increasing level of sophistication and generality. Mathematics is rarely a closed book, and seemingly innocent problems, when examined and explored, can lead to results of significance.
"The material here presented represents an elaboration on my Colloquium Lectures delivered before the American Mathematical Society at its September, 1940 meeting at Dartmouth College." - Preface.
This textbook, aimed at advanced undergraduate or beginning graduate students in mathematics, introduces both the theory of Riemann surfaces, and of analytic functions between Riemann surfaces. The first half of the book describes the basic theory, the second half develops the theory of harmonic and subharmonic functions on a Riemann surface, and culminates with a detailed proof of the famous Uniformisation Theorem and some of its applications to Riemann surface theory. The book is a major revision of the author's earlier 'Primer', with new chapters and more exercises and examples.