You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Modern multitarget-multisensor tracking systems involve the development of reliable methods for the data association and the fusion of multiple sensor information, and more specifically the partioning of observations into tracks. This paper discusses and compares the application of Dempster-Shafer Theory (DST) and the Dezert-Smarandache Theory (DSmT) methods to the fusion of multiple sensor attributes for target identification purpose. We focus our attention on the paradoxical Blackman’s association problem and propose several approaches to outperfom Blackman’s solution. We clarify some preconceived ideas about the use of degree of conflict between sources as potential criterion for partitioning evidences.
This chapter presents a new approach for solving the paradoxical Blackman’s association problem. It utilizes a new class of fusion rules based on fuzzy T-conorm/T-norm operators together with Dezert-Smarandache theory and the relative variations of generalized pignistic probabilities measure of correct associations defined from a partial ordering function of hyper-power set. The ability of this approach to solve the problem against the classical DempsterShafer’s method, proposed in the literature is proven. It is shown that the approach improves the separation power of the decision process for this association problem.
This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fu...
This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing m...
The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) ininternational conferences, seminars, workshops and journals.
The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals.
Information fusion resulting from multi-source processing, often called multisensor data fusion when sensors are the main sources of information, is a relatively young (less than 20 years) technology domain. It provides techniques and methods for: Integrating data from multiple sources and using the complementarity of this data to derive maximum information about the phenomenon being observed; Analyzing and deriving the meaning of these observations; Selecting the best course of action; and Controlling the actions. Various sensors have been designed to detect some specific phenomena, but not others. Data fusion applications can combine synergically information from many sensors, including da...