You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material t...
This book starts with simple arithmetic inequalities and builds to sophisticated inequality results such as the Cauchy-Schwarz and Chebyshev inequalities. Nothing beyond high school algebra is required of the student. The exposition is lean. Most of the learning occurs as the student engages in the problems posed in each chapter. And the learning is not “linear”. The central topic of inequalities is linked to others in mathematics. Often these topics relate to much more than algebraic inequalities. There are also “secret” pathways through the book. Each chapter has a subtext, a theme which prepares the student for learning other mathematical topics, concepts, or habits of mind. For e...
Math Hour Olympiads is a non-standard method of training middle- and high-school students interested in mathematics where students spend several hours thinking about a few difficult and unusual problems. When a student solves a problem, the solution is presented orally to a pair of friendly judges. Discussing the solutions with the judges creates a personal and engaging mathematical experience for the students and introduces them to the true nature of mathematical proof and problem solving. This book recounts the authors' experiences from the first ten years of running a Math Hour Olympiad at the University of Washington in Seattle. The major part of the book is devoted to problem sets and detailed solutions, complemented by a practical guide for anyone who would like to organize an oral olympiad for students in their community. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This book is a translation from Russian of Part I of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. The other two parts, Geometry and Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The author tries to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into the sophisticated world of topics such as group theory, Galois theory, and so on, thus building a bridge (by showing that there is no gap) between standard high school exe...
The Moscow Mathematical Olympiad has been challenging high school students with stimulating, original problems of different degrees of difficulty for over 75 years. The problems are nonstandard; solving them takes wit, thinking outside the box, and, sometimes, hours of contemplation. Some are within the reach of most mathematically competent high school students, while others are difficult even for a mathematics professor. Many mathematically inclined students have found that tackling these problems, or even just reading their solutions, is a great way to develop mathematical insight. In 2006 the Moscow Center for Continuous Mathematical Education began publishing a collection of problems fr...
This book, inspired by the Julia Robinson Mathematics Festival, aims to engage students in mathematical discovery through fun and approachable problems that reveal deeper mathematical ideas. Each chapter starts with a gentle on-ramp, such as a game or puzzle requiring no more than simple arithmetic or intuitive concepts of symmetry. Follow-up problems and activities require intuitive logic and reveal more sophisticated notions of strategy and algorithms. Projects are designed so that progress is more important than any end goal, ensuring that students will learn something significant no matter how far they get. The process of understanding the questions and how they build on one another beco...
The people of the Navajo Nation know mathematics education for their children is essential. They were joined by mathematicians familiar with ways to deliver problems and a pedagogy that, through exploration, shows the art, joy and beauty in mathematics. This combined effort produced a series of Navajo Math Circles—interactive mathematical explorations—across the Navajo Reservation. This book contains the mathematical details of that effort. Between its covers is a thematic rainbow of problem sets that were used in Math Circle sessions on the Reservation. The problem sets are good for puzzling over and exploring the mathematical ideas within. They will help nurture curiosity and confidenc...
Early middle school is a great time for children to start their mathematical circle education. This time is a period of curiosity and openness to learning. The thinking habits and study skills acquired by children at this age stay with them for a lifetime. Mathematical circles, with their question-driven approach and emphasis on creative problem-solving, have been rapidly gaining popularity in the United States. The circles expose children to the type of mathematics that stimulates development of logical thinking, creativity, analytical abilities and mathematical reasoning. These skills, while scarcely touched upon at school, are in high demand in the modern world. This book contains everyth...
Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in th...
This book is a collection of 34 curiosities, each a quirky and delightful gem of mathematics and each a shining example of the joy and surprise that mathematics can bring. Intended for the general math enthusiast, each essay begins with an intriguing puzzle, which either springboards into or unravels to become a wondrous piece of thinking. The essays are self-contained and rely only on tools from high-school mathematics (with only a few pieces that ever-so-briefly brush up against high-school calculus). The gist of each essay is easy to pick up with a cursory glance—the reader should feel free to simply skim through some essays and dive deep into others. This book is an invitation to play with mathematics and to explore its wonders. Much joy awaits! In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.