You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learning; ensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
This book constitutes the refereed proceedings of the Third International Symposium on Human Mental Workload: Models and Applications, H-WORKLOAD 2019, held in Rome, Italy, in November 2019. The volume presents one keynote paper as well as 14 revised full papers, which were carefully reviewed and selected from 32 submissions. The papers are organized in two topical sections on models and applications.
The two-volume set LNAI 7301 and 7302 constitutes the refereed proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2012, held in Kuala Lumpur, Malaysia, in May 2012. The total of 20 revised full papers and 66 revised short papers were carefully reviewed and selected from 241 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas. The papers are organized in topical sections on supervised learning: active, ensemble, rare-class and online; unsupervised learning: clustering, probabilistic modeling in the first volume and on pattern mining: networks, graphs, time-series and outlier detection, and data manipulation: pre-processing and dimension reduction in the second volume.
This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015. The 23 revised papers presented were carefully reviewed and selected from 57 submissions. The workshops affiliated with PAKDD 2015 include: Pattern Mining and Application of Big Data (BigPMA), Quality Issues, Measures of Interestingness and Evaluation of data mining models (QIMIE), Data Analytics for Evidence-based Healthcare (DAEBH), Vietnamese Language and Speech Processing (VLSP).
During the last decade, the French-speaking scientific community developed a very strong research activity in the field of Knowledge Discovery and Management (KDM or EGC for “Extraction et Gestion des Connaissances” in French), which is concerned with, among others, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and SemanticWeb. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2009 Conference held in Strasbourg, France on January 2009. The volume is organized in four parts. Part I includes five papers concerned by various aspects of supervised learning or information retrieval. Part II presents five papers concerned with unsupervised learning issues. Part III includes two papers on data streaming and two on security while in Part IV the last four papers are concerned with ontologies and semantic.
This book constitutes revised selected papers from the workshops Nemesis, UrbReas, SoGood, IWAISe, and Green Data Mining, held at the 18th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 20 papers presented in this volume were carefully reviewed and selected from a total of 32 submissions. The workshops included are: Nemesis 2018: First Workshop on Recent Advances in Adversarial Machine Learning UrbReas 2018: First International Workshop on Urban Reasoning from Complex Challenges in Cities SoGood 2018: Third Workshop on Data Science for Social Good IWAISe 2018: Second International Workshop on Artificial Intelligence in Security Green Data Mining 2018: First International Workshop on Energy Efficient Data Mining and Knowledge Discovery
The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
This book constitutes the refereed proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2009, held in Bangkok, Thailand, in April 2009. The 39 revised full papers and 73 revised short papers presented together with 3 keynote talks were carefully reviewed and selected from 338 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scientific discovery, data visualization, causal induction, and knowledge-based systems.
The two-volume set LNAI 7301 and 7302 constitutes the refereed proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2012, held in Kuala Lumpur, Malaysia, in May 2012. The total of 20 revised full papers and 66 revised short papers were carefully reviewed and selected from 241 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas. The papers are organized in topical sections on supervised learning: active, ensemble, rare-class and online; unsupervised learning: clustering, probabilistic modeling in the first volume and on pattern mining: networks, graphs, time-series and outlier detection, and data manipulation: pre-processing and dimension reduction in the second volume.
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.