Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Property ($T$) for Groups Graded by Root Systems
  • Language: en
  • Pages: 148

Property ($T$) for Groups Graded by Root Systems

The authors introduce and study the class of groups graded by root systems. They prove that if is an irreducible classical root system of rank and is a group graded by , then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of . As the main application of this theorem the authors prove that for any reduced irreducible classical root system of rank and a finitely generated commutative ring with , the Steinberg group and the elementary Chevalley group have property . They also show that there exists a group with property which maps onto all finite simple groups of Lie type and rank , thereby providing a “unified” proof of expansion in these groups.

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds
  • Language: en
  • Pages: 154

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n−1, n⩾2, and let Lk be the k-th tensor power of a CR complex line bundle L over X. Given q∈{0,1,…,n−1}, let □(q)b,k be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in Lk. For λ≥0, let Π(q)k,≤λ:=E((−∞,λ]), where E denotes the spectral measure of □(q)b,k. In this work, the author proves that Π(q)k,≤k−N0F∗k, FkΠ(q)k,≤k−N0F∗k, N0≥1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of □(q)b,k, where Fk is some kind of microlocal cut-off function. Moreover, we show that FkΠ(q)k,≤0F∗k admits a full asymptotic expansion with respect to k if □(q)b,k has small spectral gap property with respect to Fk and Π(q)k,≤0 is k-negligible away the diagonal with respect to Fk. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S1 action.

Spatially Independent Martingales, Intersections, and Applications
  • Language: en
  • Pages: 114

Spatially Independent Martingales, Intersections, and Applications

The authors define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. The authors pair the random measures with deterministic families of parametrized measures , and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of . This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of ra...

La Formule des Traces Locale Tordue
  • Language: en
  • Pages: 196

La Formule des Traces Locale Tordue

A note to readers: This book is in French. The text has two chapters. The first one, written by Waldspurger, proves a twisted version of the local trace formula of Arthur over a local field. This formula is an equality between two expressions, one involving weighted orbital integrals, the other one involving weighted characters. The authors follow Arthur's proof, but the treatement of the spectral side is more complicated in the twisted situation. They need to use the combinatorics of the “Morning Seminar”. The authors' local trace formula has the same consequences as in Arthur's paper on elliptic characters. The second chapter, written by Moeglin, gives a symmetric form of the local trace formula as in Arthur's paper on Fourier Transform of Orbital integral and describes any twisted orbital integral, in the p-adic case, as integral of characters.

Finite Groups 2003
  • Language: en
  • Pages: 434

Finite Groups 2003

This is a volume of research articles related to finite groups. Topics covered include the classification of finite simple groups, the theory of p-groups, cohomology of groups, representation theory and the theory of buildings and geometries. As well as more than twenty original papers on the latest developments, which will be of great interest to specialists, the volume contains several expository articles, from which students and non-experts can learn about the present state of knowledge and promising directions for further research. The Finite Groups 2003 conference was held in honor of John Thompson. The profound influence of his fundamental contributions is clearly visible in this collection of papers dedicated to him.

Maximal Abelian Sets of Roots
  • Language: en
  • Pages: 234

Maximal Abelian Sets of Roots

In this work the author lets be an irreducible root system, with Coxeter group . He considers subsets of which are abelian, meaning that no two roots in the set have sum in . He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of : for each -orbit of maximal abelian sets we provide an explicit representative , identify the (setwise) stabilizer of in , and decompose into -orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian -subgroups of finite groups of Lie type over fields of characteristic . Parts of the work presented here have been used to confirm the -rank ...

Tensor Products and Regularity Properties of Cuntz Semigroups
  • Language: en
  • Pages: 206

Tensor Products and Regularity Properties of Cuntz Semigroups

The Cuntz semigroup of a -algebra is an important invariant in the structure and classification theory of -algebras. It captures more information than -theory but is often more delicate to handle. The authors systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a -algebra , its (concrete) Cuntz semigroup is an object in the category of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, the authors call the latter -semigroups. The authors establish the existence of tensor products in the category and study the basic properties of this construction. They show that is a symmetric, monoidal category and relate with for certain classes of -algebras. As a main tool for their approach the authors introduce the category of pre-completed Cuntz semigroups. They show that is a full, reflective subcategory of . One can then easily deduce properties of from respective properties of , for example the existence of tensor products and inductive limits. The advantage is that constructions in are much easier since the objects are purely algebraic.

The Maslov Index in Symplectic Banach Spaces
  • Language: en
  • Pages: 134

The Maslov Index in Symplectic Banach Spaces

The authors consider a curve of Fredholm pairs of Lagrangian subspaces in a fixed Banach space with continuously varying weak symplectic structures. Assuming vanishing index, they obtain intrinsically a continuously varying splitting of the total Banach space into pairs of symplectic subspaces. Using such decompositions the authors define the Maslov index of the curve by symplectic reduction to the classical finite-dimensional case. The authors prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction while recovering all the standard properties of the Maslov index. As an application, the authors consider curves of elliptic operators which have varying principal symbol, varying maximal domain and are not necessarily of Dirac type. For this class of operator curves, the authors derive a desuspension spectral flow formula for varying well-posed boundary conditions on manifolds with boundary and obtain the splitting formula of the spectral flow on partitioned manifolds.

Subgroup Growth
  • Language: en
  • Pages: 463

Subgroup Growth

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2001. Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged. As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure. A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows'.

Bordered Heegaard Floer Homology
  • Language: en
  • Pages: 294

Bordered Heegaard Floer Homology

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.