You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.
We are delighted to introduce the proceedings of the first edition of the 2020 European Alliance for Innovation (EAI) International Conference on Advanced Scientific Innovation in Science, Engineering and Technology. This conference has brought innovative academics, industrial experts researchers, developers and practitioners around the world in the field of Science, Engineering and Technology to a common forum. The technical program of ICASISET 2020 consisted of 97 full papers, including 6 invited papers in oral presentation sessions at the main conference tracks. The conference tracks were: Innovative Computing, Advanced innovation technology in Communication, Industry automation, hydrogen...
Assembling an international team of experts, this book reports on the progress in the rapidly growing field of monolithic micro- and nanoresonators. The book opens with a chapter on photonic crystal-based resonators (nanocavities). It goes on to describe resonators in which the closed trajectories of light are supported by any variety of total internal reflection in curved and polygonal transparent dielectric structures. The book also covers distributed feedback microresonators for slow light, controllable dispersion, and enhanced nonlinearity. A portion of coverage is dedicated to the unique properties of resonators, which are extremely efficient tools when conducting multiple applications.
One of the Top Selling Physics Books according to YBP Library Services The exotic effects of slow light have been widely observed in the laboratory. However, current literature fails to explore the wider field of slow light in photonic structures and optical fibers. Reflecting recent research, Slow Light: Science and Applications presents a comprehensive introduction to slow light and its potential applications, including storage, switching, DOD applications, and nonlinear optics. The book covers fundamentals of slow light in various media, including atomic media, semiconductors, fibers, and photonic structures. Leading authorities in such diverse fields as atomic vapor spectroscopy, fiber amplifiers, and integrated optics provide an interdisciplinary perspective. They uncover potential applications in both linear and nonlinear optics. While it is impossible to account for all the captivating developments that have occurred in the last few years, this book provides an exceptional survey of the current state of the slow light field.
This book provides an interesting snapshot of recent advances in the field of single molecule nanosensing. The ability to sense single molecules, and to precisely monitor and control their motion is crucial to build a microscopic understanding of key processes in nature, from protein folding to chemical reactions. Recently a range of new techniques have been developed that allow single molecule sensing and control without the use of fluorescent labels. This volume provides an overview of recent advances that take advantage of micro- and nanoscale sensing technologies and provide the prospect for rapid future progress. The book endeavors to provide basic introductions to key techniques, recent research highlights, and an outlook on big challenges in the field and where it will go in future. It is a valuable contribution to the field of single molecule nanosensing and it will be of great interest to graduates and researchers working in this topic.
This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. - International experts - Comprehensive articles - New developments
This Festschrift is a tribute to the eminent scholar, Professor Richard Kounai Chang, on his retirement from Yale University on June 12, 2008. During his over four decades of scientific exploration, Professor Chang has made a lasting contribution to the development of linear and nonlinear optics and devices in confined geometries, of surface second-harmonic generation and surface-enhanced Raman scattering, and of novel methods for detecting airborne aerosol pathogens. This volume assembles a collection of articles contributed by former students, collaborators, and colleagues of Professor Chang all over the world. The topics span a diverse scope in applied optics frontiers, many of which are rooted in Professor Chang's pioneering research.
"provides the full, exciting story of optical modulators. a comprehensive review, from the fundamental science to the material and processing technology to the optimized device design to the multitude of applications for which broadband optical modulators bring great value. Especially valuable in my view is that the authors are internationally
Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments. International experts Comprehensive articles New developments
Assembling an international team of experts, this book reports on the progress in the rapidly growing field of monolithic micro- and nanoresonators. The book opens with a chapter on photonic crystal-based resonators (nanocavities). It goes on to describe resonators in which the closed trajectories of light are supported by any variety of total internal reflection in curved and polygonal transparent dielectric structures. The book also covers distributed feedback microresonators for slow light, controllable dispersion, and enhanced nonlinearity. A portion of coverage is dedicated to the unique properties of resonators, which are extremely efficient tools when conducting multiple applications.