You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hematite (α-Fe2O3), the stable oxide of iron, is a major constituent of soils, rocks and the earth's crust. It has unique magnetic properties that make it the prototype for the class of materials known as canted antiferromagnets.This book has no equivalent. The mean-field theory is treated in detail, and thus the book is a useful text for students mastering this general method. Information obtained by a wide variety of experimental methods is provided. These techniques include x-ray and neutron diffraction; electron magnetic resonance; Mössbauer spectroscopy; and thermal, optical, electrical and elastic measurements.
Selected modern aspects of artificially layered structures and bulk materials involving antiferromagnetic long-range order are the main themes of this book. Special emphasis is laid on the prototypical behavior of Ising-type model systems. They play a crucial role in the field of statistical physics and, in addition, contribute to the basic understanding of the exchange bias phenomenon in MBE-grown magnetic heterosystems. Throughout the book, particular attention is given to the interplay between experimental results and their theoretical description, ranging from the famous Lee-Yang theory of phase transitions to novel mechanisms of exchange bias.
This research monograph discusses the close correlation between the magnetic and structural properties of thin films in the context of numerous examples of epitaxial metal films, while emphasis is laid on the stabilization of novel structures compared to the bulk material. Further options, possibilities, and limits for applications are given. Techniques for the characterization of thin films are addressed as well.
This third edition of the introduction to solid-state physics provides an overview of the theoretical and experimental concepts of materials science.
This core undergraduate textbook presents a comprehensive overview of each major branch of theoretical and applied geophysics.
This is volume 1 of two-volume book that presents an excellent, comprehensive exposition of the multi-faceted subjects of modern condensed matter physics, unified within an original and coherent conceptual framework. Traditional subjects such as band theory and lattice dynamics are tightly organized in this framework, while many new developments emerge spontaneously from it. In this volume,? Basic concepts are emphasized; usually they are intuitively introduced, then more precisely formulated, and compared with correlated concepts.? A plethora of new topics, such as quasicrystals, photonic crystals, GMR, TMR, CMR, high Tc superconductors, Bose-Einstein condensation, etc., are presented with sharp physical insights.? Bond and band approaches are discussed in parallel, breaking the barrier between physics and chemistry.? A highly accessible chapter is included on correlated electronic states ? rarely found in an introductory text.? Introductory chapters on tunneling, mesoscopic phenomena, and quantum-confined nanostructures constitute a sound foundation for nanoscience and nanotechnology.? The text is profusely illustrated with about 500 figures.
Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of resear...
This book describes theoretical aspects of the metallic magnetism from metals to disordered alloys to amorphous alloys both at the ground state and at finite temperatures. The book gives an introduction to the metallic magnetism, and treats effects of electron correlations on magnetism, spin fluctuations in metallic magnetism, formation of complex magnetic structures, a variety of magnetism due to configurational disorder in alloys as well as a new magnetism caused by the structural disorder in amorphous alloys, especially the itinerant-electron spin glasses. The readers will find that all these topics can be understood systematically by means of the spin-fluctuation theories based on the functional integral method.
"Magnetic Interactions in Molecules and Solids" provides an in-depth journey into the captivating world of magnetism, perfect for both seasoned researchers and those keen to explore the fundamentals. Written by leading experts, we illuminate the intricate magnetic forces at play within molecules and solid materials, combining foundational theories with advanced insights to appeal to readers of varying expertise. We start with core magnetism principles—spin, magnetic moment, and magnetic fields—preparing readers to delve into complex molecular magnetic interactions. Through clear explanations and examples, we explore paramagnetism, diamagnetism, and ferromagnetism, providing a comprehensi...