You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion...
Let $X$ be a smooth elliptic fibration over a smooth base $B$. Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an $\mathcal{O} DEGREES{\times}$ gerbe over a genus one fibration which is a twisted form
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
A classical model of Brownian motion consists of a heavy molecule submerged into a gas of light atoms in a closed container. In this work the authors study a 2D version of this model, where the molecule is a heavy disk of mass $M \gg 1$ and the gas is represented by just one point particle of mass $m=1$, which interacts with the disk and the walls of the container via elastic collisions. Chaotic behavior of the particles is ensured by convex (scattering) walls of the container. The authors prove that the position and velocity of the disk, in an appropriate time scale, converge, as $M\to\infty$, to a Brownian motion (possibly, inhomogeneous); the scaling regime and the structure of the limit process depend on the initial conditions. The proofs are based on strong hyperbolicity of the underlying dynamics, fast decay of correlations in systems with elastic collisions (billiards), and methods of averaging theory.
This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.
A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.
This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.
This memoir deals with the hypoelliptic calculus on Heisenberg manifolds, including CR and contact manifolds. In this context the main differential operators at stake include the Hormander's sum of squares, the Kohn Laplacian, the horizontal sublaplacian, the CR conformal operators of Gover-Graham and the contact Laplacian. These operators cannot be elliptic and the relevant pseudodifferential calculus to study them is provided by the Heisenberg calculus of Beals-Greiner andTaylor.
This work deals with scattering by obstacles which are finite disjoint unions of strictly convex bodies with smooth boundaries in an odd dimensional Euclidean space. The class of obstacles of this type which is considered are contained in a given (large) ball and have some additional properties.
The author studies Hardy spaces on C1 and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors.