You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This companion provides a collection of frequently needed numerical data as a convenient desk-top or pocket reference for atmospheric scientists as well as a concise source of information for others interested in this matter. The material contained in this book was extracted from the recent and the past scientific literature; it covers essentially all aspects of atmospheric chemistry. The data are presented primarily in the form of annotated tables while any explanatory text is kept to a minimum. In this condensed form of presentation, the volume may serve also as a supplement to many textbooks used in teaching the subject at various universities. Peter Warneck, a physical chemist specializi...
An international team of eminent atmospheric scientists have prepared Mechanisms of Atmospheric Oxidation of the Alkanes as an authoritative source of information on the role of alkanes in the chemistry of the atmosphere. The book includes the properties of the alkanes and haloalkanes, as well as a comprehensive review and evaluation of the existing literature on the atmospheric chemistry of the alkanes and their major atmospheric oxidation products, and the various approaches now used to model the alkane atmospheric chemistry. Comprehensive coverage is given of both the unsubstituted alkanes and the many haloalkanes. All the existing quality measurements of the rate coefficients for the rea...
Knowledge of thc chemical behavior of trace compounds in the atmosphere has grown steadily, and sometimes even spectacularly, in recent decades. These developments have led to the emergence of atmospheric chemistry as a new branch of science. This book covers all aspects of atmospheric chemistry on a global scale, integrating information from chemistry and geochemistry, physics, and biology to provide a unified account. For each atmospheric constituent of interest, the text summarizes the principal observations on global distribution, chemical reactions, natural and anthropogenic sources, and physical removal processes. Coverage includes processes in the gas phase, in aerosols and c1ouds, an...
Prepared by an international team of eminent atmospheric scientists, Mechanisms of Atmospheric Oxidation of the Oxygenates is an authoritative source of information on the role of oxygenates in the chemistry of the atmosphere. The oxygenates, including the many different alcohols, ethers, aldehydes, ketones, acids, esters, and nitrogen-atom containing oxygenates, are of special interest today due to their increased use as alternative fuels and fuel additives. This book describes the physical properties of oxygenates, as well as the chemical and photochemical parameters that determine their reaction pathways in the atmosphere. Quantitative descriptions of the pathways of the oxygenates from r...
Approx.500 pagesApprox.500 pages
Proceedings of the Third European Symposium held in Varese, Italy, 10-12 April, 1984
In recent years, several new concepts have emerged in the field of stratospheric ozone depletion, creating a need for a concise in-depth publication covering the ozone-climate issue. This monograph fills that void in the literature and gives detailed treatment of recent advances in the field of stratospheric ozone depletion. It puts particular emphasis on the coupling between changes in the ozone layer and atmospheric change caused by a changing climate. The book, written by leading experts in the field, brings the reader the most recent research in this area and fills the gap between advanced textbooks and assessments.
Hydroxyl radicals (OH) play a key role in ignition processes and in the atmosphere. Thus, the detailed knowledge of the kinetics of OH reactions is crucial in combustion and atmospheric research. In this work, an experimental approach for time-resolved studies of OH radical reactions at high pressures with pulsed laser photolysis/laser-induced fluorescence was revised and the reactions of dimethyl ether, diethyl ether, and dimethoxymethane with OH radicals were investigated in detail. The results reveal a deeper insight into the reaction processes of ether compounds with OH in general, contributing to a better understanding of the combustion of different biofuels and fuel additives.