You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase.
This book presents the application of genomic tools to examine bacterial adaptation. The emphasis is on data analysis and interpretation.
The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and...
Available in print and online, this unique reference brings together all four fields of genetics, genomics, proteomics, and bioinformatics to meet your dynamic research requirements. It brings together the latest concepts in these vibrant areas and ensures a truly multidisciplinary approach. Topics include genetic variation and evolution, epigenetics, the human genome, expression profiling, proteome families, structural proteomics, gene finding/gene structure, protein function and annotation, and more. The work incorporates a vast amount of topical information, profiles cutting-edge techniques, and presents the very latest findings from an international team of over five hundred contributors...
Available in print and online, this unique reference brings together all four fields of genetics, genomics, proteomics, and bioinformatics to meet your dynamic research requirements. It brings together the latest concepts in these vibrant areas and ensures a truly multidisciplinary approach. Topics include genetic variation and evolution, epigenetics, the human genome, expression profiling, proteome families, structural proteomics, gene finding/gene structure, protein function and annotation, and more. The work incorporates a vast amount of topical information, profiles cutting-edge techniques, and presents the very latest findings from an international team of over five hundred contributors...
Our understanding of bacterial genetics has progressed as the genomics field has advanced. Genetics and genomics complement and influence each other; they are inseparable. Under the novel insights from genetics and genomics, once-believed borders in biology start to fade: biological knowledge of the bacterial world is being viewed under a new light and concepts are being redefined. Species are difficult to delimit and relationships within and between groups of bacteria – the whole concept of a tree of life – is hotly debated when dealing with bacteria. The DNA within bacterial cells contains a variety of features and signals that influence the diversity of the microbial world. This text assumes readers have some knowledge of genetics and microbiology but acknowledges that it can be varied. Therefore, the book includes all of the information that readers need to know in order to understand the more advanced material in the book.
Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of const...
Covers the history of twelve important diseases and addresses public health responses and societal upheavals. Chronicles the ways disease outbreaks shaped traditions and institutions of Western civilization. Explains the effects, causes, and outcomes from past epidemics. Describes a dozen diseases to show how disease control either was achieved or failed. Makes clear the interrelationship between diseases and history. Presents material in a compelling, clear, and jargon-free prose for a wide audience. Provides a picture of the best practices for dealing with disease outbreaks.
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.
Recombinant Antibodies for Immunotherapy provides a comprehensive overview of the field of monoclonal antibodies (mAbs), a market that has grown tremendously in recent years. Twenty-five articles by experienced and innovative authors cover the isolation of specific human mAbs, humanization, immunogenicity, technologies for improving efficacy, 'arming' mAbs, novel alternative Ab constructs, increasing half-lives, alternative concepts employing non-immunoglobulin scaffolds, novel therapeutic approaches, a market analysis of therapeutic mAbs, and future developments in the field. The concepts and technologies are illustrated by examples of recombinant antibodies being used in the clinic or in development. This book will appeal to both newcomers and experienced scientists in the field, biology and biotechnology students, research and development departments in the pharmaceutical industry, medical researchers, clinicians, and biotechnology investors.