Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Arakelov Geometry over Adelic Curves
  • Language: en
  • Pages: 468

Arakelov Geometry over Adelic Curves

The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of heig...

The Mordell Conjecture
  • Language: en
  • Pages: 180

The Mordell Conjecture

The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.

Arakelov Geometry
  • Language: en
  • Pages: 298

Arakelov Geometry

The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Proceedings of the Symposium on Algebraic Geometry in East Asia
  • Language: en
  • Pages: 280

Proceedings of the Symposium on Algebraic Geometry in East Asia

This book is the proceedings of the conference OC Algebraic Geometry in East AsiaOCO which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry."

Algebraic Geometry In East Asia, Proceedings Of The Symposium
  • Language: en
  • Pages: 273

Algebraic Geometry In East Asia, Proceedings Of The Symposium

This book is the proceedings of the conference “Algebraic Geometry in East Asia” which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry.

The Mordell Conjecture
  • Language: en
  • Pages: 179

The Mordell Conjecture

This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.

Adelic Divisors on Arithmetic Varieties
  • Language: en
  • Pages: 134

Adelic Divisors on Arithmetic Varieties

In this article, the author generalizes several fundamental results for arithmetic divisors, such as the continuity of the volume function, the generalized Hodge index theorem, Fujita's approximation theorem for arithmetic divisors, Zariski decompositions for arithmetic divisors on arithmetic surfaces and a special case of Dirichlet's unit theorem on arithmetic varieties, to the case of the adelic arithmetic divisors.

Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory
  • Language: en
  • Pages: 230

Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory

In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.

Semicrossed Products of Operator Algebras by Semigroups
  • Language: en
  • Pages: 110

Semicrossed Products of Operator Algebras by Semigroups

The authors examine the semicrossed products of a semigroup action by -endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.

Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces
  • Language: en
  • Pages: 247

Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces

This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax–Schanuel con...