You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
This work focuses on the impact of human activity on the geological environment and contains over 100 papers dealing with laboratory and field research investigations in geomechanics, geoengineering and mathematical modelling. Topics covered are grouped into eight main themes: response of the rock mass to human impact; slope stability; field research; laboratory research; stability of underground openings; mathematical modelling; stress measurements, and mineral and rock disintegration.
Barodesy is a constitutive model for granular materials. It is based on proportional strain and stress paths and the asymptotic behaviour of soil. In this work, an existing relation for proportional strain paths and proportional stress paths is further developed. A modification of barodesy to model clay behaviour is introduced. Common concepts of soil mechanics, such as critical states, barotropy and pyknotropy are comprised.
This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide charac...
Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME): • TC304 Engineering Practice of Risk Assessment & Management • TC205 Safety and Serviceability in Geotechnical Design • TC212 Deep Foundations • TC302 Forensic Geotechnical Engineering Geotechnical Risk and Safety V covers seven themes: 1. Geotechnical Risk Management and Risk Communication 2. Variabi...
Barodesy is a constitutive model for granular materials such as sand and clay. It is based on the asymptotic behaviour of granular media at a constant deformation rate. In this work the existing sand version of Barodesy is improved. For this purpose, the underlying scalar equations are simplified using different concepts from soil mechanics. The improved version is also compared with laboratory tests and different elastoplastic and hypoplastic constitutive relations. Also the stability of slopes and advanced stress paths such as the rotation of the princple stresses are investigated with these models.
The authors introduce geomathematics as an active research area to a wider audience. Chapter 1 presents an introduction to the Earth as a system to apply scientific methods. Emphasis is laid on transfers from virtual models to reality and vice versa. In the second chapter geomathematics is introduced as a new scientific area which nevertheless has its roots in antiquity. The modern conception of geomathematics is outlined from different points of view and its challenging nature is described as well as its interdisciplinarity. Geomathematics is shown as the bridge between the real world and the virtual world. The complex mathematical tools are shown from a variety of fields necessary to tackl...
This work aims at developing a numerical simulation method, Soft PARticle Code (SPARC). The term textit soft emphasizes that no boundaries between particles are defined and every particle possesses a support consisting of a set of adjacent particles. The polynomial interpolation/approximation method is utilized for the evaluation of spatial derivatives using the information carried by particles in supports. The system of equations consisting of spatial derivatives is solved using an iterative nonlinear solver and the computation of the Jacobian matrix is parallelized. The simulations of laboratory tests have been carried out to show the applications and limitations of the current version of SPARC. In addition to the simulations, laboratory (zig-zag) model tests using fine sand were carried out, in which the cyclic tilt of a retaining wall induces a peculiar motion in the backfill (sand), with closed trajectories (eddies).
This volume contains peer-reviewed papers from the Third World Landslide Forum organized by the International Consortium on Landslides (ICL) in June 2014. The complete collection of papers from the Forum is published in three full-color volumes and one mono-color volume.
Diese Arbeit behandelt die Simulation von langsam kriechenden Massenbewegungen mit bestehenden und einer neuen Erweiterung eines bestehenden viskosen Materialmodells. Die nichtlinear- viskosen Materialmodelle nach NORTON und nach VULLIET-HUTTER, sowie die neue Erweiterung werden auf ihre Eignung zur Abbildung von Kriechgeschwindigkeiten an Kriechhängen untersucht. Die Anwendbarkeit wird am Fallbeispiel des Hochmais-Atemkopf -Kriechhanges oberhalb des Gepatsch-Stausees in Österreich überprüft. Das erste Materialmodell berechnet die viskosen Verzerrungsraten als Funktion der Deviatorspannung, die anderen beiden Materialmodelle berücksichtigen neben der Deviatorspannung noch den hydrostati...