Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Geometry of Isotropic Convex Bodies
  • Language: en
  • Pages: 618

Geometry of Isotropic Convex Bodies

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.

A Study in Derived Algebraic Geometry
  • Language: en
  • Pages: 577

A Study in Derived Algebraic Geometry

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of -categories and the basics of derived algebraic geom...

The Random Matrix Theory of the Classical Compact Groups
  • Language: en
  • Pages: 225

The Random Matrix Theory of the Classical Compact Groups

Provides a comprehensive introduction to the theory of random orthogonal, unitary, and symplectic matrices.

Galois Theories of Linear Difference Equations: An Introduction
  • Language: en
  • Pages: 185

Galois Theories of Linear Difference Equations: An Introduction

This book is a collection of three introductory tutorials coming out of three courses given at the CIMPA Research School “Galois Theory of Difference Equations” in Santa Marta, Columbia, July 23–August 1, 2012. The aim of these tutorials is to introduce the reader to three Galois theories of linear difference equations and their interrelations. Each of the three articles addresses a different galoisian aspect of linear difference equations. The authors motivate and give elementary examples of the basic ideas and techniques, providing the reader with an entry to current research. In addition each article contains an extensive bibliography that includes recent papers; the authors have provided pointers to these articles allowing the interested reader to explore further.

Persistence Theory: From Quiver Representations to Data Analysis
  • Language: en
  • Pages: 229

Persistence Theory: From Quiver Representations to Data Analysis

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

The Ricci Flow: Techniques and Applications
  • Language: en
  • Pages: 397

The Ricci Flow: Techniques and Applications

Ricci flow is a powerful technique using a heat-type equation to deform Riemannian metrics on manifolds to better metrics in the search for geometric decompositions. With the fourth part of their volume on techniques and applications of the theory, the authors discuss long-time solutions of the Ricci flow and related topics. In dimension 3, Perelman completed Hamilton's program to prove Thurston's geometrization conjecture. In higher dimensions the Ricci flow has remarkable properties, which indicates its usefulness to understand relations between the geometry and topology of manifolds. This book discusses recent developments on gradient Ricci solitons, which model the singularities developi...

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces
  • Language: en
  • Pages: 321

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces

This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

Foundations of Arithmetic Differential Geometry
  • Language: en
  • Pages: 357

Foundations of Arithmetic Differential Geometry

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

Foundations of Free Noncommutative Function Theory
  • Language: en
  • Pages: 194

Foundations of Free Noncommutative Function Theory

In this book the authors develop a theory of free noncommutative functions, in both algebraic and analytic settings. Such functions are defined as mappings from square matrices of all sizes over a module (in particular, a vector space) to square matrices over another module, which respect the size, direct sums, and similarities of matrices. Examples include, but are not limited to, noncommutative polynomials, power series, and rational expressions. Motivation and inspiration for using the theory of free noncommutative functions often comes from free probability. An important application area is "dimensionless" matrix inequalities; these arise, e.g., in various optimization problems of system engineering. Among other related areas are those of polynomial identities in rings, formal languages and finite automata, quasideterminants, noncommutative symmetric functions, operator spaces and operator algebras, and quantum control.

The Octagonal PETs
  • Language: en
  • Pages: 226

The Octagonal PETs

A polytope exchange transformation is a (discontinuous) map from a polytope to itself that is a translation wherever it is defined. The 1-dimensional examples, interval exchange transformations, have been studied fruitfully for many years and have deep connections to other areas of mathematics, such as Teichmüller theory. This book introduces a general method for constructing polytope exchange transformations in higher dimensions and then studies the simplest example of the construction in detail. The simplest case is a 1-parameter family of polygon exchange transformations that turns out to be closely related to outer billiards on semi-regular octagons. The 1-parameter family admits a complete renormalization scheme, and this structure allows for a fairly complete analysis both of the system and of outer billiards on semi-regular octagons. The material in this book was discovered through computer experimentation. On the other hand, the proofs are traditional, except for a few rigorous computer-assisted calculations.