You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The latest update to Bela Liptak's acclaimed "bible" of instrument engineering is now available. Retaining the format that made the previous editions bestsellers in their own right, the fourth edition of Process Control and Optimization continues the tradition of providing quick and easy access to highly practical information. The authors are practicing engineers, not theoretical people from academia, and their from-the-trenches advice has been repeatedly tested in real-life applications. Expanded coverage includes descriptions of overseas manufacturer's products and concepts, model-based optimization in control theory, new major inventions and innovations in control valves, and a full chapter devoted to safety. With more than 2000 graphs, figures, and tables, this all-inclusive encyclopedic volume replaces an entire library with one authoritative reference. The fourth edition brings the content of the previous editions completely up to date, incorporates the developments of the last decade, and broadens the horizons of the work from an American to a global perspective. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.
Instrument Engineers' Handbook – Volume 3: Process Software and Digital Networks, Fourth Edition is the latest addition to an enduring collection that industrial automation (AT) professionals often refer to as the "bible." First published in 1970, the entire handbook is approximately 5,000 pages, designed as standalone volumes that cover the measurement (Volume 1), control (Volume 2), and software (Volume 3) aspects of automation. This fourth edition of the third volume provides an in-depth, state-of-the-art review of control software packages used in plant optimization, control, maintenance, and safety. Each updated volume of this renowned reference requires about ten years to prepare, so...
Analytical Instrumentation examines analyzers for detecting pollutants and other hazardous matter, including carbon monoxide, chlorine, fluoride, hydrogen sulfide, mercury, and phosphorous. Also covers selection, application, and sampling procedures.
The Instrument and Automation Engineers’ Handbook (IAEH) is the Number 1 process automation handbook in the world. The two volumes in this greatly expanded Fifth Edition deal with measurement devices and analyzers. Volume one, Measurement and Safety, covers safety sensors and the detectors of physical properties, while volume two, Analysis and Analysis, describes the measurement of such analytical properties as composition. Complete with 245 alphabetized chapters and a thorough index for quick access to specific information, the IAEH, Fifth Edition is a must-have reference for instrument and automation engineers working in the chemical, oil/gas, pharmaceutical, pollution, energy, plastics, paper, wastewater, food, etc. industries.
This comprehensive book examines the technology and practical applications of plant multivariable envelope control. Optimize plant productivity, including air handlers, boilers, chemical reactors, chillers, clean-rooms, compressors and fans, cooling towers, heat exchangers, and pumping stations. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.
Temperature Measurement covers nearly every type of temperature measurement device, in particular, bimetallic thermometers, filled bulb and glass stem thermometers, thermistors, thermocouples, and thermowells. Includes suppliers and prices. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.
Fully illustrated with diagrams, tables, and formulas, Flow Measurement covers virtually every type of flow meter in use today. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.
In Optimization of Industrial Unit Processes, the term "optimization" means the maximizing of productivity and safety while minimizing operating costs. In a fully optimized plant, efficiency and productivity are continuously maximized while levels, temperatures, pressures, or flows float within their allowable limits. This control philosophy differs from earlier approaches - where levels and temperatures were controlled at constant values, and plant productivity was only an accidental, uncontrolled consequence of those controlled variables. With this approach, the sides of a multivariable control envelope are the various constraints while inside the envelope the process is continuously moved...