You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Readers of my books, students and scientists, often ask for spe cial references not commonly found in introductory or interme diate books on statistics. From the titles and contents of 1449 key papers and books which are listed and numbered in Sec tion 5, I have selected keywords and subject headings and ar ranged them alphabetically together with the numbers of perti nent references in Section 3. Number 1153, for instance, denotes my book" Applied Statis tics". It contains a bibliographical section on pages 568 to 641. Supplementary material is displayed in this small bibliographi cal guide. It also complements well-known textbooks of Box, Hunter and Hunter (No.121), Dixon and Massey (No.28...
This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.
This book deals with the development of methodology for the analysis of truncated and censored sample data. It is primarily intended as a handbook for practitioners who need simple and efficient methods for the analysis of incomplete sample data.
Textbook for a methods course or reference for an experimenter who is mainly interested in data analyses rather than in the mathematical development of the procedures. Provides the most useful statistical techniques, not only for the normal distribution, but for other important distributions, such a
This work describes several statistical techniques for studying repeated measures data, presenting growth curve methods applicable to biomedical, social, animal, agricultural and business research. It details the multivariate development of growth science and repeated measures experiments, covering time-moving covariates, exchangable errors, bioassay results, missing data procedures and nonparametric and Bayesian methods.
Offers an applications-oriented treatment of parameter estimation from both complete and censored samples; contains notations, simplified formats for estimates, graphical techniques, and numerous tables and charts allowing users to calculate estimates and analyze sample data quickly and easily. Furnishing numerous practical examples, this resource serves as a handy reference for statisticians, biometricians, medical researchers, operations research and quality control practitioners, reliability and design engineers, and all others involved in the analysis of sample data from skewed distributions, as well as a text for senior undergraduate and graduate students in statistics, quality control, operations research, mathematics and biometry courses.
Mathematical statistics typically represents one of the most difficult challenges in statistics, particularly for those with more applied, rather than mathematical, interests and backgrounds. Most textbooks on the subject provide little or no review of the advanced calculus topics upon which much of mathematical statistics relies and furthermore contain material that is wholly theoretical, thus presenting even greater challenges to those interested in applying advanced statistics to a specific area. Mathematical Statistics with Applications presents the background concepts and builds the technical sophistication needed to move on to more advanced studies in multivariate analysis, decision th...
Focusing on group sequential procedures, summarizes the sequential statistical methods used in anticancer, antiviral, cardiovascular, and gastrointestinal drug research and screening. The clinical and preclinical applications are mainly presented as case studies, many of which form part of New Drug
"This useful volume provides a thorough synthesis of second-order asymptotics in multistage sampling methodologies for selection and ranking unifying available second-order results in general and applying them to a host of situations Contains, in each chapter, helpful Notes and Overviews to facilitate comprehension, as well as Complements and Problems for more in-depth study of specific topics!"
Demonstrates ways to track industrial processes and performance, integrating related areas such as engineering process control, statistical reasoning in TQM, robust parameter design, control charts, multivariate process monitoring, capability indices, experimental design, empirical model building, and process optimization. The book covers a range of statistical methods and emphasizes practical applications of quality control systems in manufacturing, organization and planning.