You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study. An access
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering top...
This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational ...
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.
Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.
This IMA Volume in Mathematics and its Applications SOLITONS IN PHYSICS, MATHEMATICS, AND NONLINEAR OPTICS is based on the proceedings of two workshops which were an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshops focussed on the main parts of the theory of solitons and on the applications of solitons in physics, biology and engineering, with a special concentration on nonlinear optics. We thank the Coordinating Committee: James Glimm, Daniel Joseph, Barbara Keyfitz, An Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for drew planning and implementing the stimulating year-long program. We especially thank the Workshop Organizers for Solitons in...
Substances possessing heterogeneous microstructure on the nanometer and micron scales are scientifically fascinating and technologically useful. Examples of such substances include liquid crystals, microemulsions, biological matter, polymer mixtures and composites, vycor glasses, and zeolites. In this volume, an interdisciplinary group of researchers report their developments in this field. Topics include statistical mechanical free energy theories which predict the appearance of various microstructures, the topological and geometrical methods needed for a mathematical description of the subparts and dividing surfaces of heterogeneous materials, and modern computer-aided mathematical models and graphics for effective exposition of the salient features of microstructured materials.
The articles in this volume cover recent work in the area of flow control from the point of view of both engineers and mathematicians. These writings are especially timely, as they coincide with the emergence of the role of mathematics and systematic engineering analysis in flow control and optimization. Recently this role has significantly expanded to the point where now sophisticated mathematical and computational tools are being increasingly applied to the control and optimization of fluid flows. These articles document some important work that has gone on to influence the practical, everyday design of flows; moreover, they represent the state of the art in the formulation, analysis, and computation of flow control problems. This volume will be of interest to both applied mathematicians and to engineers.
This is the second volume in the series "Mathematics in Industrial Prob lems." The motivation for both volumes is to foster inter action between Industry and Mathematics at the "grass roots"; that is at the level of spe cific problems. These problems come from Industry: they arise from models developed by the industrial scientists in venture directed at the manufac ture of new or improved products. At the same time, these problems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA seminar on Industrial Problems. T...