You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
This volume contains papers presented at the Steklov Seminar on Statistics and Control of Stochastic Processes. For the past three decades, the seminar has determined the development, in a number of important directions, of the theory of random processes not only in the USSR (now Russia) but in the whole world. It was organised by A N Shiryaev in collaboration with N V Krylov and R Sh Liptser. It started off with optimal stopping and filtering with applications to engineering, and very soon extended its interests to more general problems of stochastic control, causal and anticipating stochastic calculus, limit theorems for semimartingales, martingale methods in queueing theory, foundations of statistics of random processes and, in recent years, mathematical finance. Many studies, for example of stochastic PDEs or extended stochastic integrals, anticipated largely Western works.The contributions in this book are devoted to the hottest topics and united by a martingale methodology which was the key idea of the seminar.
To honor Rafail Z. Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held. This volume commemorates this special event. Dedicated to Professor Khasminskii, it consists of nine papers on various topics in probability and statistics.
This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
A collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. It covers the topics ranging from Markov processes, backward stochastic differential equations, stochastic partial differential equations, and stochastic control, to risk measure and risk theory.
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap. The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of time-scales present near a change of stability. For students, the book provides a lucid introduction to the subject highlighting the new tools necessary for stochastic equations, while serving as an excellent guide to recent research.
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehe...
Meshfree approximation methods are a relatively new area of research, and there are only a few books covering it at present. Whereas other works focus almost entirely on theoretical aspects or applications in the engineering field, this book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods.The emphasis here is on a hands-on approach that includes MATLAB routines for all basic operations. Meshfree approximation methods, such as radial basis function and moving least squares method, are discussed from a scattered data approximation and partial differential equations point of view. A good balance is supplied between the necessary theory and implementation in terms of many MATLAB programs, with examples and applications to illustrate key points. Used as class notes for graduate courses at Northwestern University, Illinois Institute of Technology, and Vanderbilt University, this book will appeal to both mathematics and engineering graduate students.
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.