Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Stochastic Evolution Systems
  • Language: en
  • Pages: 340

Stochastic Evolution Systems

  • Type: Book
  • -
  • Published: 2018-10-03
  • -
  • Publisher: Springer

This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.

Mathematics of Physics and Engineering
  • Language: en
  • Pages: 500

Mathematics of Physics and Engineering

Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.

Stochastic Differential Equations
  • Language: en
  • Pages: 416

Stochastic Differential Equations

The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.

Stochastic Partial Differential Equations
  • Language: en
  • Pages: 517

Stochastic Partial Differential Equations

  • Type: Book
  • -
  • Published: 2017-07-06
  • -
  • Publisher: Springer

Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in...

New Trends in Stochastic Analysis and Related Topics
  • Language: en
  • Pages: 458

New Trends in Stochastic Analysis and Related Topics

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehe...

Wiener Chaos: Moments, Cumulants and Diagrams
  • Language: en
  • Pages: 281

Wiener Chaos: Moments, Cumulants and Diagrams

The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

Stochastic Analysis and Applications to Finance
  • Language: en
  • Pages: 465

Stochastic Analysis and Applications to Finance

A collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. It covers the topics ranging from Markov processes, backward stochastic differential equations, stochastic partial differential equations, and stochastic control, to risk measure and risk theory.

Random Obstacle Problems
  • Language: en
  • Pages: 171

Random Obstacle Problems

  • Type: Book
  • -
  • Published: 2017-02-27
  • -
  • Publisher: Springer

Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-valued solutions to SPDEs. Inspired by the classical stochastic calculus for diffusions, which is unfortunately still unavailable in infinite dimensions, it uses integration by parts formulae on convex sets of paths in order to describe the behaviour of the solutions at the boundary and the contact set between the solution and the obstacle. The text may serve as an introduction to space-time white noise, SPDEs and monotone gradient systems. Numerous open research problems in both classical and new topics are proposed.

Topics in Stochastic Analysis and Nonparametric Estimation
  • Language: en
  • Pages: 223

Topics in Stochastic Analysis and Nonparametric Estimation

To honor Rafail Z. Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held. This volume commemorates this special event. Dedicated to Professor Khasminskii, it consists of nine papers on various topics in probability and statistics.

Stochastic Differential Equations
  • Language: en
  • Pages: 416

Stochastic Differential Equations

This volume consists of 15 articles written by experts in stochastic analysis. The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract the attention of mathematicians of all generations. Together with a short but thorough introduction to SPDEs, it presents a number of optimal, and essentially unimprovable, results about solvability for a large class of both linear and non-linear equations. The other papers in this volume were specially written for the occasion of Prof RozovskiiOCOs 60th birthday. They tackle a wide range of topics in the theory and applications of stochastic differential equations, both ordinary and with partial derivatives."