You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.
This book contains articles arising from a conference in honour of mathematician-statistician Miklόs Csörgő on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csörgő’s list of publications during more than 50 years, since 1962.
This volume is a collection of chapters covering the latest developments in applications of financial mathematics and statistics to topics in energy, commodity financial markets and environmental economics. The research presented is based on the presentations and discussions that took place during the Fields Institute Focus Program on Commodities, Energy and Environmental Finance in August 2013. The authors include applied mathematicians, economists and industry practitioners, providing for a multi-disciplinary spectrum of perspectives on the subject. The volume consists of four sections: Electricity Markets; Real Options; Trading in Commodity Markets; and Oligopolistic Models for Energy Pro...
The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to...
This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.
Lie theory has connections to many other disciplines such as geometry, number theory, mathematical physics, and algebraic combinatorics. The interaction between algebra, geometry and combinatorics has proven to be extremely powerful in shedding new light on each of these areas. This book presents the lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the exciting developments in Lie algebras and representation theory in the last two decades. It includes topics such as geometric realizations of irreducible representations in thr...
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research ...
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in...
Provides an overview of the distinct variety and diversity of current research in this field. In every chapter of this book, which covers themes ranging from cancer modelling to infectious diseases to orthopaedics and musculoskeletal tissue mechanics, there is clear evidence of the strong connections and interactions of mathematics with the biological and biomedical sciences that have spawned new models and novel insights.
Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentrati...