You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book consists of three expository articles written by outstanding researchers in Mathematical Physics: Rafael Benguria, Peter Hislop, and Elliott Lieb. The articles are based on their lectures at the Fourth Summer School in Analysis and Mathematical Physics, held at the Institute of Mathematics, Universidad Nacional Autonoma de Mexico, Cuernavaca in May 2005. The main goal of the articles is to link the basic knowledge of a graduate student in Mathematics with three current research topics in Mathematical Physics: Isoperimetric inequalities for eigenvalues of the Laplace Operator, Random Schrodinger Operators, and Stability of Matter, respectively. These well written articles will guide and introduce the reader to current research topics and will also provide information on recent progress in some areas of Mathematical Physics.
For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.
The first Summer School of Analysis and Mathematical Physics of the Universidad Nacional Autónoma de México (Cuernavaca) offered graduate and advanced undergraduate students courses on modern topics in the overlap between analysis and physics. This volume contains the expanded notes from the lectures by Brian Hall, Alejandro Uribe, and David Borthwick. The articles introduce readers to mathematical methods of classical and quantum mechanics and the link between these two theories: quantization and semiclassical analysis. Hall writes about holomorphic methods in analysis and mathematical physics and includes exercises. Uribe's lectures covered trace formulae, in particular asymptotic behavi...
With contributions by leading mathematicians, this proceedings volume reflects the program of the Eighth International Conference on $p$-adic Functional Analysis held at Blaise Pascal University (Clermont-Ferrand, France). Articles in the book offer a comprehensive overview of research in the area. A wide range of topics are covered, including basic ultrametric functional analysis, topological vector spaces, measure and integration, Choquet theory, Banach and topological algebras,analytic functions (in particular, in connection with algebraic geometry), roots of rational functions and Frobenius structure in $p$-adic differential equations, and $q$-ultrametric calculus. The material is suitable for graduate students and researchers interested in number theory, functionalanalysis, and algebra.
This volume contains articles representing the courses given at the 2005 RSME Santalo Summer School on ``Recent Trends in Cryptography''. The main goal of the Summer School was to present some of the recent mathematical methods used in cryptography and cryptanalysis. The School was oriented to graduate and doctoral students, as well as recent doctorates. The material is presented in an expository manner with many examples and references. The topics in this volume cover some of the most interesting new developments in public key and symmetric key cryptography, such as pairing based cryptography and lattice based cryptanalysis.
This volume presents articles by speakers and participants in two AMS special sessions, Geometric Group Theory and Geometric Methods in Group Theory, held respectively at Northeastern University (Boston, MA) and at Universidad de Sevilla (Spain). The expository and survey articles in the book cover a wide range of topics, making it suitable for researchers and graduate students interested in group theory.
Contains the proceedings of the Third Arolla Conference on Algebraic Topology, which took place in Arolla, Switzerland, on August 18-24, 2008. This title includes research papers on stable homotopy theory, the theory of operads, localization and algebraic K-theory, as well as survey papers on the Witten genus and localization techniques.
Graph coloring is one of the oldest and best-known problems of graph theory. Statistics show that graph coloring is one of the central issues in the collection of several hundred classical combinatorial problems. This book covers the problems in graph coloring, which can be viewed as one area of discrete optimization.
The Emphasis Year on Nonlinear Partial Differential Equations and Related Analysis at Northwestern University produced this fine collection of original research and survey articles. Many well-known mathematicians attended the events and submitted their contributions for this volume. Eighteen papers comprise this work, representing the most significant advances and current trends in nonlinear PDEs and their applications. Topics covered include elliptic and parabolic equations, NavierStokes equations, and hyperbolic conservation laws. Important applications are presented from incompressible and compressible fluid mechanics, combustion, and electromagnetism. Also included are articles on recent advances in statistical reliability in modeling, simulation, level set methods forimage processing, shock waves, free boundaries, boundary layers, errors in numerical solutions, stability, instability, and singular limits. The volume is suitable for researchers and graduate students interested in partial differential equations.
This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie