You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Expert systems allow scientists to access, manage, and apply data and specialized knowledge from various disciplines to their own research. Expert Systems in Chemistry Research explains the general scientific basis and computational principles behind expert systems and demonstrates how they can improve the efficiency of scientific workflows
The budding field of nanotechnology offers enormous potential for advances in medical science, engineering, transportation, computers, and many other industries. As this growing field solidifies, these technological advances may soon become a reality. Nanoscience and Advancing Computational Methods in Chemistry: Research Progress provides innovative chapters covering the growth of educational, scientific, and industrial research activities among chemical engineers and provides a medium for mutual communication between international academia and the industry. This book publishes significant research reporting new methodologies and important applications in the fields of chemical informatics and discusses latest coverage of chemical databases and the development of new experimental methods.
Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. Research in organometallic chemistry is also conducted in the areas of cluster synthesis, main-group derivatives in unusual oxidation states, organometallic polymers, unstable organometallic compounds and intermediates in matrices, structure determination of organometallic compounds in the solid state [X-ray diffraction] and gaseous states [electron diffraction], and mechanisms of reactions of transient silylenes and related species. In addition to the traditional metals and semimetals, elements such as selenium, lithium and magnesium are considered to form organometallic compounds, e.g. organomagnesium compounds MeMgI, iodo(methyl)magnesium and diethylmagnesium which are Grignard reagents an organo-lithium compound BuLi butyllithium. Organometallic compounds often find practical use as catalysts, the processing of petroleum products and the production of organic polymers.
Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. This book presents research in this field.
Coordination chemistry is the study of compounds formed between metal ions and other neutral or negatively charged molecules. Coordination chemistry includes areas of inorganic solid state chemistry, organometallic chemistry and bioinorganic chemistry, as well as applications to analytical chemistry, catalysis, industrial chemistry and materials science.
Solution chemistry deals with liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. This book includes experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and non-electrolytes in liquid solutions. The latest research in the world has been selected, gathered and presented here.
This book is open access under a CC BY-NC 2.5 license. On April 22, 1915, the German military released 150 tons of chlorine gas at Ypres, Belgium. Carried by a long-awaited wind, the chlorine cloud passed within a few minutes through the British and French trenches, leaving behind at least 1,000 dead and 4,000 injured. This chemical attack, which amounted to the first use of a weapon of mass destruction, marks a turning point in world history. The preparation as well as the execution of the gas attack was orchestrated by Fritz Haber, the director of the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry in Berlin-Dahlem. During World War I, Haber transformed his research in...