You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, an...
This practical guide provides over 100 self-contained recipes to help you creatively solve issues you may encounter in your AWS cloud endeavors. If you're comfortable with rudimentary scripting and general cloud concepts, this cookbook will give you what you need to both address foundational tasks and create high-level capabilities. AWS Cookbook provides real-world examples that incorporate best practices. Each recipe includes code that you can safely execute in a sandbox AWS account to ensure that it works. From there, you can customize the code to help construct your application or fix your specific existing problem. Recipes also include a discussion that explains the approach and provides context. This cookbook takes you beyond theory, providing the nuts and bolts you need to successfully build on AWS. You'll find recipes for: Organizing multiple accounts for enterprise deployments Locking down S3 buckets Analyzing IAM roles Autoscaling a containerized service Summarizing news articles Standing up a virtual call center Creating a chatbot that can pull answers from a knowledge repository Automating security group rule monitoring, looking for rogue traffic flows And more.
Companies today are moving rapidly to integrate generative AI into their products and services. But there's a great deal of hype (and misunderstanding) about the impact and promise of this technology. With this book, Chris Fregly, Antje Barth, and Shelbee Eigenbrode from AWS help CTOs, ML practitioners, application developers, business analysts, data engineers, and data scientists find practical ways to use this exciting new technology. You'll learn the generative AI project life cycle including use case definition, model selection, model fine-tuning, retrieval-augmented generation, reinforcement learning from human feedback, and model quantization, optimization, and deployment. And you'll e...
Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company's specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems.
Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life
This is a first-principles-based, practical introduction to the fundamentals of data science aimed at the mathematically-comfortable reader with some programming skills. The book covers: The important parts of Python to know The important parts of Math / Probability / Statistics to know The basics of data science How commonly-used data science techniques work (learning by implementing them) What is Map-Reduce and how to do it in Python Other applications such as NLP, Network Analysis, and more.
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging...
If you use data to make critical business decisions, this book is for you. Whether you're a data analyst, research scientist, data engineer, ML engineer, data scientist, application developer, or systems developer, this guide helps you broaden your understanding of the modern data science stack, create your own machine learning pipelines, and deploy them to applications at production scale. The AWS data science stack unifies data science, data engineering, and application development to help you level up your skills beyond your current role. Authors Antje Barth and Chris Fregly show you how to build your own ML pipelines from existing APIs, submit them to the cloud, and integrate results int...
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll ...
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support ...