You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Companies today are moving rapidly to integrate generative AI into their products and services. But there's a great deal of hype (and misunderstanding) about the impact and promise of this technology. With this book, Chris Fregly, Antje Barth, and Shelbee Eigenbrode from AWS help CTOs, ML practitioners, application developers, business analysts, data engineers, and data scientists find practical ways to use this exciting new technology. You'll learn the generative AI project life cycle including use case definition, model selection, model fine-tuning, retrieval-augmented generation, reinforcement learning from human feedback, and model quantization, optimization, and deployment. And you'll e...
Cloud computing has become integrated into all sectors, from business to quotidian life. Since it has revolutionized modern computing, there is a need for updated research related to the architecture and frameworks necessary to maintain its efficiency. The Handbook of Research on End-to-End Cloud Computing Architecture Design provides architectural design and implementation studies on cloud computing from an end-to-end approach, including the latest industrial works and extensive research studies of cloud computing. This handbook enumerates deep dive and systemic studies of cloud computing from architecture to implementation. This book is a comprehensive publication ideal for programmers, IT professionals, students, researchers, and engineers.
Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance. Key FeaturesExplore key Amazon SageMaker capabilities in the context of deep learningTrain and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloadsCover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMakerBook Description Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of prac...
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, an...
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML p...
Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples Key Features Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines Explore large-scale distributed training for models and datasets with AWS and SageMaker examples Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring Book Description Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to tho...
Overcome advanced challenges in building end-to-end ML solutions by leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production Key FeaturesLearn best practices for all phases of building machine learning solutions - from data preparation to monitoring models in productionAutomate end-to-end machine learning workflows with Amazon SageMaker and related AWSDesign, architect, and operate machine learning workloads in the AWS CloudBook Description Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabili...
Companies today are moving rapidly to integrate generative AI into their products and services. But there's a great deal of hype (and misunderstanding) about the impact and promise of this technology. With this book, Chris Fregly, Antje Barth, and Shelbee Eigenbrode from AWS help CTOs, ML practitioners, application developers, business analysts, data engineers, and data scientists find practical ways to use this exciting new technology. You'll learn the generative AI project life cycle including use case definition, model selection, model fine-tuning, retrieval-augmented generation, reinforcement learning from human feedback, and model quantization, optimization, and deployment. And you'll e...
Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code Key FeaturesUnderstand the ML lifecycle in the cloud and its development on Amazon SageMaker StudioLearn to apply SageMaker features in SageMaker Studio for ML use casesScale and operationalize the ML lifecycle effectively using SageMaker StudioBook Description Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), ...
Work through interesting real-life business use cases to uncover valuable insights from unstructured text using AWS AI services Key FeaturesGet to grips with AWS AI services for NLP and find out how to use them to gain strategic insightsRun Python code to use Amazon Textract and Amazon Comprehend to accelerate business outcomesUnderstand how you can integrate human-in-the-loop for custom NLP use cases with Amazon A2IBook Description Natural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production. To start with, you'll understand the importance of NLP...