Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Effective Data Science Infrastructure
  • Language: en
  • Pages: 350

Effective Data Science Infrastructure

Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company's specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems.

Machine Learning: ECML 2004
  • Language: en
  • Pages: 597

Machine Learning: ECML 2004

This book constitutes the refereed proceedings of the 15th European Conference on Machine Learning, ECML 2004, held in Pisa, Italy, in September 2004, jointly with PKDD 2004. The 45 revised full papers and 6 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 280 papers submitted to ECML and 107 papers submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Implementing MLOps in the Enterprise
  • Language: en
  • Pages: 380

Implementing MLOps in the Enterprise

With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production. Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many compone...

Pervasive Computing
  • Language: en
  • Pages: 385

Pervasive Computing

  • Type: Book
  • -
  • Published: 2007-06-22
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 5th International Conference on Pervasive Computing, PERVASIVE 2007, held in Toronto, Canada in May 2007. The 21 revised full papers are organized in topical sections on reaching out, context and its application, security and privacy, understanding use, sensing, as well as finding and positioning.

Python for DevOps
  • Language: en
  • Pages: 506

Python for DevOps

Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and op...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 787

Machine Learning and Knowledge Discovery in Databases

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Designing Machine Learning Systems
  • Language: en
  • Pages: 389

Designing Machine Learning Systems

Many tutorials show you how to develop ML systems from ideation to deployed models. But with constant changes in tooling, those systems can quickly become outdated. Without an intentional design to hold the components together, these systems will become a technical liability, prone to errors and be quick to fall apart. In this book, Chip Huyen provides a framework for designing real-world ML systems that are quick to deploy, reliable, scalable, and iterative. These systems have the capacity to learn from new data, improve on past mistakes, and adapt to changing requirements and environments. Youâ??ll learn everything from project scoping, data management, model development, deployment, and ...

Discovery Science
  • Language: en
  • Pages: 354

Discovery Science

This book constitutes the refereed proceedings of the 11th International Conference on Discovery Science, DS 2008, held in Budapest, Hungary, in October 2008, co-located with the 19th International Conference on Algorithmic Learning Theory, ALT 2008. The 26 revised long papers presented together with 5 invited papers were carefully reviewed and selected from 58 submissions. The papers address all current issues in the area of development and analysis of methods for intelligent data analysis, knowledge discovery and machine learning, as well as their application to scientific knowledge discovery. The papers are organized in topical sections on learning, feature selection, associations, discovery processes, learning and chemistry, clustering, structured data, and text analysis.

Feature Store for Machine Learning
  • Language: en
  • Pages: 281

Feature Store for Machine Learning

Learn how to leverage feature stores to make the most of your machine learning models Key Features • Understand the significance of feature stores in the ML life cycle • Discover how features can be shared, discovered, and re-used • Learn to make features available for online models during inference Book Description Feature store is one of the storage layers in machine learning (ML) operations, where data scientists and ML engineers can store transformed and curated features for ML models. This makes them available for model training, inference (batch and online), and reuse in other ML pipelines. Knowing how to utilize feature stores to their fullest potential can save you a lot of tim...

Knowledge Discovery in Databases: PKDD 2004
  • Language: en
  • Pages: 578

Knowledge Discovery in Databases: PKDD 2004

This book constitutes the refereed proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2004, held in Pisa, Italy, in September 2004 jointly with ECML 2004. The 39 revised full papers and 9 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 194 papers submitted to PKDD and 107 papers submitted to both, PKDD and ECML. The papers present a wealth of new results in knowledge discovery in databases and address all current issues in the area.